613 research outputs found

    TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuronal hyperexcitability is a crucial phenomenon underlying spontaneous and evoked pain. In invertebrate nociceptors, the S-type leak K<sup>+ </sup>channel (analogous to TREK-1 in mammals) plays a critical role of in determining neuronal excitability following nerve injury. Few data are available on the role of leak K<sub>2P </sub>channels after peripheral axotomy in mammals.</p> <p>Results</p> <p>Here we describe that rat sciatic nerve axotomy induces hyperexcitability of L4-L5 DRG sensory neurons and decreases TRESK (K2P18.1) expression, a channel with a major contribution to total leak current in DRGs. While the expression of other channels from the same family did not significantly change, injury markers ATF3 and Cacna2d1 were highly upregulated. Similarly, acute sensory neuron dissociation (<it>in vitro </it>axotomy) produced marked hyperexcitability and similar total background currents compared with neurons injured <it>in vivo</it>. In addition, the sanshool derivative IBA, which blocked TRESK currents in transfected HEK293 cells and DRGs, increased intracellular calcium in 49% of DRG neurons in culture. Most IBA-responding neurons (71%) also responded to the TRPV1 agonist capsaicin, indicating that they were nociceptors. Additional evidence of a biological role of TRESK channels was provided by behavioral evidence of pain (flinching and licking), in vivo electrophysiological evidence of C-nociceptor activation following IBA injection in the rat hindpaw, and increased sensitivity to painful pressure after TRESK knockdown in vivo.</p> <p>Conclusions</p> <p>In summary, our results clearly support an important role of TRESK channels in determining neuronal excitability in specific DRG neurons subpopulations, and show that axonal injury down-regulates TRESK channels, therefore contributing to neuronal hyperexcitability.</p

    What happens if you single out? An experiment

    Get PDF
    We present an experiment investigating the effects of singling out an individual on trust and trustworthiness. We find that (a) trustworthiness falls if there is a singled out subject; (b) non-singled out subjects discriminate against the singled out subject when they are not responsible of the distinct status of this person; (c) under a negative frame, the singled out subject returns significantly less; (d) under a positive frame, the singled out subject behaves bimodally, either selecting very low or very high return rates. Overall, singling out induces a negligible effect on trust but is potentially disruptive for trustworthiness

    Two types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies

    Get PDF
    Ni based magnetic shape memory alloys (MSMAs) have broad applications in actuators and MEMS devices. Two-stage stress induced martensitic phase transformation, a widely observed phenomenon in these alloys, is described conventionally as a first stage L21 (austenite)-to-10M/14M (M: modulated martensite) transition, followed by a second stage 14M-to-L10 (tetragonal martensite) transformation at higher stresses. Here we show, for the first time via in-situ nanoindentation on single crystalline Ni54Fe19Ga27 alloy, that a reversible L21-to-10M/14M transformations took place at lower stress. However at higher stress, an irreversible transition from residual L21 to L10 martensite (a second type of phase transformation) occurred. Furthermore phase fronts propagate gradually during the L21-to-10M/14M transformation, whereas L10 is abruptly emitted in a jerky style during the 14M-to-L10 transformation. Detailed examination of crystal structure suggests that a direct transition from 14M to observed L10 is crystallographically forbidden in the current loading condition. This study provides new perspective for understanding of stress induced various types of phase transformations in MSMAs. This research is funded by NSF-CMMI under grant no. 1129065

    Orientation dependence of the elastocaloric effect in Ni54Fe19Ga27 ferromagnetic shape memory alloy

    Get PDF
    The crystallographic anisotropy of elastocaloric effect (ECE) and relative cooling power (RCP) in Ni54Fe19Ga27 shape memory alloy single crystals are studied via compression tests. Single crystals are studied along the [001], [123], and [011] austenite directions and yield different ECE behaviors and maximum RCPs for various strain levels. A thermodynamic framework using the Helmholtz free energy is employed to analyze the total entropy change as a function of strain. Thermodynamic losses are computed from the mechanical hysteresis of superelasticity experiments to quantify the strain dependent RCP. It is found that the [001] orientation generates the highest maximal RCP of 738 J kg−1 when unloaded from 200 MPa. This is attributed mainly to the large superelastic temperature window of 45 K. However, loading the crystals to stresses higher than 200 MPa causes a multistep transformation in the [011] direction, thus reducing the alloy's overall RCP by 135 J kg−1. This is a consequence of the negative entropy change and large transformation hysteresis generated by the second‐stage transformation in the [011] direction. Interestingly, if only the first‐stage transformation in [011] is employed for the ECE, the [011] direction yields the highest RCP compared to [001] and [123] for any strain up to 3.5%

    Donor/Recipient HLA Molecular Mismatch Scores Predict Primary Humoral and Cellular Alloimmunity in Kidney Transplantation

    Get PDF
    Donor/recipient molecular human leukocyte antigen (HLA) mismatch predicts primary B-cell alloimmune activation, yet the impact on de novo donor-specific T-cell alloimmunity (dnDST) remains undetermined. The hypothesis of our study is that donor/recipient HLA mismatches assessed at the molecular level may also influence a higher susceptibility to the development of posttransplant primary T-cell alloimmunity. In this prospective observational study, 169 consecutive kidney transplant recipients without preformed donor-specific antibodies (DSA) and with high resolution donor/recipient HLA typing were evaluated for HLA molecular mismatch scores using different informatic algorithms [amino acid mismatch, eplet MM, and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II)]. Primary donor-specific alloimmune activation over the first 2 years posttransplantation was assessed by means of both dnDSA and dnDST using single antigen bead (SAB) and IFN-γ ELISPOT assays, respectively. Also, the predominant alloantigen presenting pathway priming DST alloimmunity and the contribution of main alloreactive T-cell subsets were further characterized in vitro. Pretransplantation, 78/169 (46%) were DST+ whereas 91/169 (54%) DST-. At 2 years, 54/169 (32%) patients showed detectable DST responses: 23/54 (42%) dnDST and 31/54 (57%) persistently positive (persistDST+). 24/169 (14%) patients developed dnDSA. A strong correlation was observed between the three distinct molecular mismatch scores and they all accurately predicted dnDSA formation, in particular at the DQ locus. Likewise, HLA molecular incompatibility predicted the advent of dnDST, especially when assessed by PIRCHE-II score (OR 1.014 95% CI 1.001-1.03, p=0.04). While pretransplant DST predicted the development of posttransplant BPAR (OR 5.18, 95% CI=1.64-16.34, p=0.005) and particularly T cell mediated rejection (OR 5.33, 95% CI=1.45-19.66, p=0.012), patients developing dnDST were at significantly higher risk of subsequent dnDSA formation (HR 2.64, 95% CI=1.08-6.45, p=0.03). In vitro experiments showed that unlike preformed DST that is predominantly primed by CD8+ direct pathway T cells, posttransplant DST may also be activated by the indirect pathway of alloantigen presentation, and predominantly driven by CD4+ alloreactive T cells in an important proportion of patients. De novo donor-specific cellular alloreactivity seems to precede subsequent humoral alloimmune activation and is influenced by a poor donor/recipient HLA molecular matching

    Azetidinium lead iodide for perovskite solar cells

    Get PDF
    Hybrid organic–inorganic perovskites have been established as good candidate materials for emerging photovoltaics, with device efficiencies of over 22% being reported. There are currently only two organic cations, methylammonium and formamidinium, which produce 3D perovskites with band gaps suitable for photovoltaic devices. Numerous computational studies have identified azetidinium as a potential third cation for synthesizing organic–inorganic perovskites, but to date no experimental reports of azetidinium containing perovskites have been published. Here we prepare azetidinium lead iodide for the first time. Azetidinium lead iodide is a stable, bright orange material which does not appear to form a 3D or a 2D perovskite. It was successfully used as the absorber layer in solar cells. We also show that it is possible to make mixed cation devices by adding the azetidinium cation to methylammonium lead iodide. Computational studies show that the substitution of up to 5% azetidinium into the methylammonium lead iodide is energetically favourable and that phase separation does not occur at these concentrations. Mixed azetidinium–methylammonium cells show improved performance and reduced hysteresis compared to methylammonium lead iodide cells

    Machine learning can identify newly diagnosed patients with CLL at high risk of infection

    Get PDF
    Infections have become the major cause of morbidity and mortality among patients with chronic lymphocytic leukemia (CLL) due to immune dysfunction and cytotoxic CLL treatment. Yet, predictive models for infection are missing. In this work, we develop the CLL Treatment-Infection Model (CLL-TIM) that identifies patients at risk of infection or CLL treatment within 2 years of diagnosis as validated on both internal and external cohorts. CLL-TIM is an ensemble algorithm composed of 28 machine learning algorithms based on data from 4,149 patients with CLL. The model is capable of dealing with heterogeneous data, including the high rates of missing data to be expected in the real-world setting, with a precision of 72% and a recall of 75%. To address concerns regarding the use of complex machine learning algorithms in the clinic, for each patient with CLL, CLL-TIM provides explainable predictions through uncertainty estimates and personalized risk factors

    A Single-Step Sequencing Method for the Identification of Mycobacterium tuberculosis Complex Species

    Get PDF
    The Mycobacterium tuberculosis complex (MTC) comprises several closely related species responsible for strictly human and zoonotic tuberculosis. Some of the species are restricted to Africa and were responsible for the high prevalence of tuberculosis. However, their identification at species level is difficult and expansive. Accurate species identification of all members is warranted in order to distinguish between strict human and zoonotic tuberculosis, to trace source exposure during epidemiological studies, and for the appropriate treatment of patients. In this paper, the Exact Tandem Repeat D (ETR-D) intergenic region was investigated in order to distinguish MTC species. The ETR-D sequencing unambiguously identified MTC species type strain except M. pinnipedii and M. microti, and the results agreed with phenotypic and molecular identification. This finding offers a new tool for the rapid and accurate identification of MTC species in a single sequencing reaction, replacing the current time-consuming polyphasic approach. Its use could assist public health interventions and aid in the control of zoonotic transmission in African countries, and could be of particular interest with the current emergence of multidrug-resistant and extended-resistance isolates

    Prevalence of pulmonary TB and spoligotype pattern of Mycobacterium tuberculosis among TB suspects in a rural community in Southwest Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Ethiopia where there is no strong surveillance system and state of the art diagnostic facilities are limited, the real burden of tuberculosis (TB) is not well known. We conducted a community based survey to estimate the prevalence of pulmonary TB and spoligotype pattern of the <it>Mycobacterium tuberculosis </it>isolates in Southwest Ethiopia.</p> <p>Methods</p> <p>A total of 30040 adults in 10882 households were screened for pulmonary TB in Gilgel Gibe field research centre in Southwest Ethiopia. A total of 482 TB suspects were identified and smear microscopy and culture was done for 428 TB suspects. Counseling and testing for HIV/AIDS was done for all TB suspects. Spoligotyping was done to characterize the <it>Mycobacterium tuberculosis </it>isolates.</p> <p>Results</p> <p>Majority of the TB suspects were females (60.7%) and non-literates (83.6%). Using smear microscopy, a total of 5 new and 4 old cases of pulmonary TB cases were identified making the prevalence of TB 30 per 100,000. However, using the culture method, we identified 17 new cases with a prevalence of 76.1 per 100,000. There were 4.3 undiagnosed pulmonary TB cases for every TB case who was diagnosed through the passive case detection mechanism in the health facility. Eleven isolates (64.7%) belonged to the six previously known spoligotypes: T, Haarlem and Central-Asian (CAS). Six new spoligotype patterns of <it>Mycobacterium tuberculosis</it>, not present in the international database (SpolDB4) were identified. None of the rural residents was HIV infected and only 5 (5.5%) of the urban TB suspects were positive for HIV.</p> <p>Conclusion</p> <p>The prevalence of TB in the rural community of Southwest Ethiopia is low. There are large numbers of undiagnosed TB cases in the community. However, the number of sputum smear-positive cases was very low and therefore the risk of transmitting the infection to others may be limited. Active case finding through health extension workers in the community can improve the low case detection rate in Ethiopia. A large scale study on the genotyping of <it>Mycobacterium tuberculosis </it>in Ethiopia is crucial to understand transmission dynamics, identification of drug resistant strains and design preventive strategies.</p

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies
    corecore