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Machine learning can identify newly diagnosed
patients with CLL at high risk of infection
Rudi Agius1,2, Christian Brieghel2, Michael A. Andersen 2, Alexander T. Pearson 3, Bruno Ledergerber4,5,

Alessandro Cozzi-Lepri6, Yoram Louzoun 7, Christen L. Andersen2,8, Jacob Bergstedt 9,
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Carmen D. Herling12, Michael Hallek12,13, Jens Lundgren 5, Cameron Ross MacPherson5, Jan Larsen1 &

Carsten U. Niemann 2*

Infections have become the major cause of morbidity and mortality among patients with

chronic lymphocytic leukemia (CLL) due to immune dysfunction and cytotoxic CLL treatment.

Yet, predictive models for infection are missing. In this work, we develop the CLL Treatment-

Infection Model (CLL-TIM) that identifies patients at risk of infection or CLL treatment within

2 years of diagnosis as validated on both internal and external cohorts. CLL-TIM is an

ensemble algorithm composed of 28 machine learning algorithms based on data from 4,149

patients with CLL. The model is capable of dealing with heterogeneous data, including the

high rates of missing data to be expected in the real-world setting, with a precision of 72%

and a recall of 75%. To address concerns regarding the use of complex machine learning

algorithms in the clinic, for each patient with CLL, CLL-TIM provides explainable predictions

through uncertainty estimates and personalized risk factors.

https://doi.org/10.1038/s41467-019-14225-8 OPEN

1 Department of Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark. 2 Department of Hematology, Rigshospitalet,
Copenhagen University Hospital, Copenhagen, Denmark. 3 Department of Medicine, University of Chicago, Chicago, IL, USA. 4 University of Zurich,
Zurich, Switzerland. 5 Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Copenhagen University Hospital,
Copenhagen, Denmark. 6 University College London, London, UK. 7 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel. 8 Department of
Public Health, Copenhagen University, Copenhagen, Denmark. 9Human Evolutionary Genetics Unit, Institut Pasteur, Paris, France. 10 Rigshospitalet,
Copenhagen University Hospital, Copenhagen, Denmark. 11 International Group for Data Analysis, Institut Pasteur, Paris, France. 12 Department of Internal
Medicine and Center of Integrated Oncology Cologne Bonn, University Hospital, Cologne, Germany. 13 Center of Integrated Oncology Cologne Bonn,
University Hospital, Cologne, CECAD (Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases), University of Cologne,
Cologne, Germany. *email: Carsten.utoft.niemann@regionh.dk

NATURE COMMUNICATIONS |          (2020) 11:363 | https://doi.org/10.1038/s41467-019-14225-8 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9729-9974
http://orcid.org/0000-0001-9729-9974
http://orcid.org/0000-0001-9729-9974
http://orcid.org/0000-0001-9729-9974
http://orcid.org/0000-0001-9729-9974
http://orcid.org/0000-0003-2801-7456
http://orcid.org/0000-0003-2801-7456
http://orcid.org/0000-0003-2801-7456
http://orcid.org/0000-0003-2801-7456
http://orcid.org/0000-0003-2801-7456
http://orcid.org/0000-0003-1714-6148
http://orcid.org/0000-0003-1714-6148
http://orcid.org/0000-0003-1714-6148
http://orcid.org/0000-0003-1714-6148
http://orcid.org/0000-0003-1714-6148
http://orcid.org/0000-0002-9279-6936
http://orcid.org/0000-0002-9279-6936
http://orcid.org/0000-0002-9279-6936
http://orcid.org/0000-0002-9279-6936
http://orcid.org/0000-0002-9279-6936
http://orcid.org/0000-0002-2804-0560
http://orcid.org/0000-0002-2804-0560
http://orcid.org/0000-0002-2804-0560
http://orcid.org/0000-0002-2804-0560
http://orcid.org/0000-0002-2804-0560
http://orcid.org/0000-0002-3483-0219
http://orcid.org/0000-0002-3483-0219
http://orcid.org/0000-0002-3483-0219
http://orcid.org/0000-0002-3483-0219
http://orcid.org/0000-0002-3483-0219
http://orcid.org/0000-0001-8901-7850
http://orcid.org/0000-0001-8901-7850
http://orcid.org/0000-0001-8901-7850
http://orcid.org/0000-0001-8901-7850
http://orcid.org/0000-0001-8901-7850
http://orcid.org/0000-0001-9880-5242
http://orcid.org/0000-0001-9880-5242
http://orcid.org/0000-0001-9880-5242
http://orcid.org/0000-0001-9880-5242
http://orcid.org/0000-0001-9880-5242
mailto:Carsten.utoft.niemann@regionh.dk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Overall survival (OS) for patients diagnosed with chronic
lymphocytic leukemia (CLL) has significantly improved
with the introduction of combination chemotherapy,

chemoimmunotherapy, and targeted therapy1–4. According to the
international workshop on CLL guidelines, CLL treatment is not
recommended unless cytopenia, symptomatic disease, or short
lymphocyte doubling time is present;5 most patients thus enter a
“watch-and-wait” period at diagnosis. During this period, severe
infections prior to CLL treatment result in a higher 30-day mor-
tality (9.8%) than upon CLL treatment, leading to worse
treatment-free survival and OS compared to matched patients
without severe infection6,7. Predictive models for identifying these
patients are warranted, since prognostic factors for infections in
CLL prior to and upon CLL treatment are largely unknown.
Resulting from the double-hit of immunosuppressive treatment
(from chemoimmunotherapy) and immune dysfunction (from
CLL)2,3,8, infections have become the most common cause of
death among all age groups in CLL1. Therefore, it is also necessary
to model patients at risk of CLL treatment to identify those at risk
of further immunosuppression. The first step in changing the
natural history of CLL-induced immune dysfunction is thus to
identify patients at risk of infection or CLL treatment at time of
diagnosis5. Previously, models in CLL have focused on the pre-
diction of progression — or treatment-free survival, and OS9–11 —
predictive models that combine treatment and infection as an
outcome, such as we propose, have not yet been explored.

Fueled by the tumor microenvironment interaction, neoplastic
CLL cells take hostage and impair normal B-cells, macrophages,
and T-cell functions12–16. This causes hypogammaglobinemia,
pseudo-exhausted immune function, and cytokine changes that
may be partially reversed by targeted therapies12,17–19. If patients
at high risk of infection or CLL treatment could be identified at
time of diagnosis, targeted therapies modulating the immune
dysfunction among these high-risk patients could be pro-
spectively tested in a clinical trial. Thus, we developed the CLL
Treatment-Infection Model (CLL-TIM), to select patients for a
randomized clinical trial (PreVent-ACaLL, NCT03868722),
investigating whether three months of venetoclax and acalabru-
tinib combination therapy can improve the natural history of
immune dysfunction due to CLL. To our knowledge, this is the
first time a machine learning model will be used for patient
selection in a randomized clinical trial.

Current prognostic models in CLL9–11,20–22, are based on a
handful of variables extracted at the time of diagnosis or treat-
ment, thus overlooking the complexity of CLL, and this, without
being able to handle missing data or present uncertainty esti-
mates. In order to address clinical viability, modeling of CLL-TIM
was initiated at the International Modeling Immune System and
Pathogen Camp23 where collaborations between physicians,
molecular biologists, and data analysts identified modeling
requirements for trustable machine learning implementations in
the clinic. Analogous to the different disciplines and experience of
this team, we took a “multiple-outlooks” approach to the devel-
opment of CLL-TIM, which was to collate an ensemble of 28
machine learning algorithms to model changes in patient his-
tories spanning 7 years prior to CLL diagnosis. Histories of which
included laboratory results, physician’s decisions, infectious
events and comorbidities along with traditional prognostic
markers11,24. Validated on an internal Danish test cohort, and an
independent external German cohort, CLL-TIM surpassed the
current gold standard for prognostication in CLL (CLL-IPI11). As
a result of our multiple-outlooks approach, we were able to
substantially increase the number of patients detected as high-
risk, and even under high rates of missing data, provided pre-
dictions for all CLL patients. By modeling both infectious disease
and CLL treatment events as an outcome, we establish a link

between immune dysfunction and progressive disease in CLL,
and demonstrate the complexity and non-linearity of risk factors
contributing to immune dysfunction and treatment need.
Through our online version of CLL-TIM, CLL-TIM.org, we
provide explainable predictions by accompanying them with
uncertainty estimates and personalized risk factors driving a given
patient’s predicted risk.

Results
Patient characteristics from Danish National CLL registry.
Based on the Danish National CLL registry, we identified 4149
patients diagnosed with CLL between January 2004 and July 2017.
To ensure inclusion of all results from tests ordered at time of
diagnosis we shifted time-point zero, which we refer to as the
prediction point, to three months post-diagnosis for the training
phase. We thus excluded patients who died (n= 74) or initiated
CLL treatment (n= 373) prior to this (Supplementary Fig. 1),
reducing the available sample size to n= 3720 (see Table 1 for
baseline characteristics). For assessment in the internal test
cohort, time-point zero varied between zero and three months
post-diagnosis and for the external test cohort it varied between
zero and 1-year post-diagnosis (Supplementary Fig. 2). For
modeling, we only used patient data prior to the prediction point.
As a composite outcome, we set out to predict the combined
event of an infection or CLL treatment within 2-years from the
prediction point. As it is standard practice that a blood culture is
drawn when a patient has symptoms classified as a serious clinical
infection, we used the event of having a blood culture drawn as a
proxy for infection. This, irrespective of the result of blood culture
being negative, indicative of contamination or positive25–27. As a
first event during the 2-year predictive window, 572 (15.4%)
patients had a severe infection, 398 (10.7%) received CLL treat-
ment and 103 (2.8%) died, while 2647 (71.1%) had no study-
relevant events (Supplementary Fig. 1). All CLL-IPI variables11

were available for 48% of the cohort. Using stratified sampling
that preserved class distributions, we randomly divided the cohort
into a training set of 2432 (65%) patients and equally sized
internal validation and test sets (~17.5% each at 642 and 646
patients, respectively).

Development and Composition of CLL-TIM. For each patient,
we used three look-back windows of 3 months, 1 year, and 7 years
prior to CLL-diagnosis to model microbiology, laboratory,
pathology, clinical and CLL-specific patient data (Fig. 1a–c;
Supplementary Methods subsection Feature Generation). Within
these windows we used features like the Bag-Of-Words28 (BOW),
which describes the frequency of past events. Other features were
designed to capture: the density and recentness of infections
(Supplementary Fig. 3); rates of change; variability; and minima
and maxima of laboratory test results, among others (Supple-
mentary Table 1). We further modeled information related to the
date of routine laboratory tests to capture the urgency of a
patient’s condition and symptomology as interpreted by the
physician (Supplementary Methods subsection Feature Genera-
tion). This resulted in a final feature space of 7,288 dimensions
(Supplementary Table 2), reduced using dimensionality reduction
techniques (Fig. 1d, Supplementary Table 3 and Methods sub-
section Base-learner generation), upon which we applied 2,000
different algorithms (referred to as base-learners) — each pro-
viding a unique outlook into the patient’s history (Fig. 1d;
Methods subsection Base-learner generation). We next generated
29 ensembles (of sizes 2–30 base-learners) using a genetic algo-
rithm (Fig. 1e; Methods subsection Ensemble generation), ranked
the 29 ensembles using an ensemble diversity and generalization
score (Methods subsection Ensemble ranking); from which the
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top-ranked ensemble, CLL-TIM, was selected as the final model
(Supplementary Fig. 4). We handled missing data using different
methodologies (Methods subsection Handling of missing data).
CLL-TIM is composed of 28 base-learners spanning both linear
and non-linear algorithms. In total, CLL-TIM uses 85 original
variables from patient histories (Fig. 2a), which translate to 228
engineered features (Fig. 2b and Supplementary Data 1). CLL-
TIM also exhibited low redundancy among the selected features,
where only 2% of all possible pair-wise feature correlations had an
absolute Pearson’s Correlation Coefficient (PCC) greater than 0.8
(Supplementary Fig. 5).

Predictive uncertainty is reliably reported. Central to achieving
trust in an algorithm’s predictions, is having an indication of when
it might be making an erroneous prediction. A limitation in pre-
vious prognostic models in CLL9–11,20–22 is the lack of uncertainty
estimates for their predictions. The magnitude of agreement
between CLL-TIM’s 28 base-learners was used to indicate the
confidence or uncertainty in CLL-TIM’s predictions (Methods
subsection Clinical trial requirements). This confidence was gen-
erated without any knowledge of the ground truth in patient
outcome. On the separate internal test cohort (n= 646, Supple-
mentary Fig. 1) that was used only after selecting CLL-TIM as our
final model, CLL-TIM’s predictions for patients meeting the high-
confidence (HC) threshold were more accurate than for those with
a low-confidence (LC) prediction (Supplementary Fig. 6, CLL-TIM
HC, n= 261 Hazard-Ratio (HR): 7.3 (CI95%: 7.2–7.5) vs. CLL-TIM
LC, n= 385, HR: 2.1 (CI95%: 1.8–2.8)). Thus, the magnitude of
agreement between CLL-TIM’s 28 base-learners was confirmed to
be a reliable uncertainty estimate.

CLL-TIM outperforms CLL-IPI and benchmark models. To
allow for benchmarking against the current gold standard CLL
prognostic model, CLL-IPI11 (developed for time to first treat-
ment (TTFT) and OS), we defined an internal benchmark
(BENCH-I; Supplementary Figs. 1, 4a) of 288 patients with both
a full CLL-IPI and a full 2-year follow-up. On BENCH-I, CLL-
TIM HC predictions (n= 145) achieved a precision of 0.72
(CI95%: 0.63–0.82) and a recall of 0.75 (CI95%: 0.65–0.86)
resulting in a Matthews correlation coefficient (MCC) of 0.56
(CI95%: 0.42–0.70). This equated to a 2-year event-free survival
(EFS) of 27.8 and 83.5% for the high- and low-risk group,
respectively (CI95%: 18.4–41.9% and 76–91.8%, Fig. 3a, b and
Supplementary Table 4). CLL-IPI score ranks a patient’s risk
with a score ranging from 0 to 10 (Supplementary Table 5). As
MCC, precision and recall vary depending on the CLL-IPI
threshold chosen, for an unbiased comparison to CLL-IPI, we
used the threshold insensitive precision-recall area-under-
curve29,30 (PR-AUC) as a metric. CLL-TIM HC (n= 145)
achieved a PR-AUC of 0.78 (CI95%: 0.69–0.86), significantly
outperforming the highest PR-AUC achieved for CLL-IPI at 0.52
(CI95%: 0.43–0.61, p < 0.005 with one-tailed Mann–Whitney U
test, Fig. 3c and Supplementary Tables 6–8). CLL-TIM also
outperformed CLL-IPI for the 5-year composite outcome (p <
0.0005, Supplementary Tables 9–11). In addition, ensembles with
variables selected by a data-driven strategy such as CLL-TIM,
outperformed those using variables chosen by experienced CLL
physicians and those not employing patient data prior to CLL-
diagnosis (ENS-COMPDoctor’s Choice and ENS-COMP3-months, p <
0.05 with one-tailed Wilcoxon signed rank test, Supplementary
Fig. 7).

Table 1 Baseline characteristics internal and external cohorts.

Variable Level Internal Train
(n= 2432)

Internal Validation
(n= 642)

Internal Test
(n= 646)

Internal Total
(n= 3720)

External CLL7
(n= 365)

Age (years) <65 years 708 (29.1) 218 (34.0) 188 (29.1) 1114 (29.9) 269 (73.7)
≥65 years 1724 (70.9) 424 (66.0) 458 (70.9) 2606 (70.1) 96 (26.3)

Sex Female 955 (39.3) 274 (42.7) 251 (38.9) 1480 (39.8) 131 (35.9)
Male 1477 (60.7) 368 (57.3) 395 (61.1) 2240 (60.2) 234 (64.1)

Binet stage A 2068 (85.0) 558 (86.9) 551 (85.3) 3177 (85.4) 365 (100)
B 303 (12.5) 63 (9.8) 77 (11.9) 443 (11.9) 0 (0)
C 61 (2.5) 21 (3.3) 18 (2.8) 100 (2.7) 0 (0)

β2 microglobulin > 4 mg L−1 No 1620 (87.6) 434 (90.0) 444 (87.2) 2498 (88.0) 345 (94.5)
Yes 229 (12.4) 48 (10.0) 65 (12.8) 342 (12.0) 4 (1.1)
missing 583 160 137 880 16 (4.4)

IgHV status mutated 1320 (69.3) 373 (72.9) 370 (71.2) 2063 (70.3) 275 (75.3)
unmutated 584 (30.7) 139 (27.1) 150 (28.8) 873 (29.7) 85 (23.3)
missing 528 130 126 784 5 (1.4)

Hierarchical FISHa del(17p) 108 (4.4) 25 (3.9) 25 (3.9) 158 (4.2) 9 (2.5)
del(11q)b 130 (5.3) 31 (4.8) 36 (5.6) 197 (5.3) 28 (7.7)
Trisomy12c 244 (10) 61 (9.5) 73 (11.3) 378 (10.2) 27 (7.4)
Normald 440 (18.1) 127 (19.8) 141 (21.8) 708 (19.0) 298 (81.6)
del(13q)e 981 (40.3) 251 (39.1) 222 (34.4) 1454 (39.1) –

ECOG performance status 0 1859 (76.4) 502 (78.2) 515 (79.7) 2876 (77.3) 312 (85.5)
1 459 (18.9) 112 (17.4) 100 (15.5) 671 (18) 48 (13.2)
2 71 (2.9) 20 (3.1) 19 (2.9) 110 (3) 1 (0.3)
3 25 (1) 4 (0.6) 9 (1.4) 38 (1) 0 (0)
4 7 (0.3) 1 (0.2) 1 (0.2) 9 (0.2) 0 (0)
missing 11 (0.5) 3 (0.5) 2 (0.3) 16 (0.4) 4 (1.1)

Baseline characteristics for n= 3720 patients after excluding patients that initiated CLL treatment or died before the prediction point of 3-months post-diagnosis (Supplementary Fig. 1). As expected for a
population-based cohort of patients at time of CLL diagnosis, 70% were above 65 years of age, 60% were male, 30% had IgHV unmutated status, 12% had elevated β2 microglobulin, and 15% were Binet
stage B or C. German External CLL7 cohort had 26% of patients above 65 years of age, 64% were male, 23% had IGHV unmutated status, 4% had elevated β2 microglobulin, and all patients were
Binet A
IgHV the immunoglobulin heavy chain gene, FISH DNA fluorescence in situ hybridization, ECOG Eastern cooperative oncology group
aAccording to Dohner hierarchical Model
bExcluding del(17p)
cExcluding del(17p) and del(11q)
dno del(17p),del(11q),Trisomy12 and del(13q) for internal cohorts, and no del(17p),del(11q) and Trisomy12 for external cohort
eExcluding del(17p), del(11q), and trisomy12
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Fig. 1 Development of CLL-TIM and selection of high-risk patients for PreVent-ACaLL clinical trial. a For each patient, we modeled patient data in three
look-back windows. Prediction-point was set at 3-months post-diagnosis and the 2-year risk of infection or CLL treatment (composite outcome) was the
target outcome. b We assembled five datasets on 4149 CLL patients from the Nationwide Danish CLL registry, the Danish Microbiology Database, the
Persimune data warehouse and health registries. c Using the Bag-Of-Words (BOW) approach, we modeled the frequency of occurrence of 216 diagnoses,
153 pathologies, and 46 microbiology findings (including 9 blood culture findings). We modeled the distribution of past infections and laboratory test
results and designed latent features that model urgency of patient’s condition and patient symptoms as interpreted by the treating physician. d Generation
of a single base-learner (single outlook) required the random selection of: a machine learning algorithm; hyper-parameters; a target outcome and feature
selection. In total, using this randomized protocol, we generated 2000 base-learners, each with their unique outlook into a patient’s history. e A genetic
algorithm (GA) was designed to generate 29 ensembles of 2–30 base-learners each. The generated ensembles were then post-ranked according to
multiple criteria designed to maximize the generalizability of the ensemble. f The top-ranked ensemble chosen as CLL-TIM was then invoked to predict the
2-year composite outcome on a previously unseen test cohort and subsequently for the selection of high-risk patients for the PreVent A-CaLL Clinical Trial.
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Increased call rate for high-risk predictions with CLL-TIM. The
modeling of risk through the multiple outlooks of CLL-TIM’s 28
base-learners (Fig. 2) was aimed at increasing the recall of high-
risk predictions by allowing multiple paths in risk estimation of
the composite outcome. On BENCH-I, CLL-TIM HC and CLL-
TIM predicted 60 and 86 patients as high-risk, respectively (n=
145 and 288; Precision 0.72 (CI95%: 0.63–0.82) and 0.63 (CI95%:
0.55–0.72)). In turn, using CLL-IPI, 6 and 37 patients were
respectively categorized as very-high-risk or above (7+), and
high-risk or above (4+) (n= 288; Precision 1 (CI95%: 1–1) and
0.60 (CI95%: 0.45–0.74). Additionally, 126 patients were categor-
ized as intermediate risk or above (2+), but 54% of these patients
had no infection or treatment within 2-years (n= 288; Precision
0.46 (CI95%: 0.40–0.52)). Furthermore, CLL-TIM enabled pre-
dictions on the remaining 48% of the test cohort patients, for

which one or more CLL-IPI variables were missing (Supple-
mentary Fig. 6e).

Robustness to missing data on internal Danish test cohort.
CLL-TIM is composed of 85 variables encoded into 228 features
(Supplementary Data 1), but designed to give robust estima-
tions even when only a fraction of these variables are available.
For instance, patients in the internal test cohort had a mean
missing feature rate ranging from 3% to 48% per base-learner
(Fig. 3d). To further test the robustness of CLL-TIM in
potential real-world missingness scenarios, we re-tested CLL-
TIM on BENCH-I by fixing entire variable categories to a
missing value state. Robustness was claimed if CLL-TIM’s
performance in a missing data simulation, was still significantly
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better than CLL-IPI. CLL-TIM met this robustness condition
under the unavailability of all laboratory test variables,
pathology data, blood culture data or diagnosis data; even when
set to missing all together – hence, even on predictions for
patients with only baseline data, CLL-TIM was still superior to
CLL-IPI (Supplementary Fig. 8).

Robustness to missing data on external CLL7 test cohort. Next,
we gathered data from the German phase 3 CLL7 watch and wait
cohort (NCT00275054; n= 365 patients) as a real-world valida-
tion of CLL-TIM’s robustness to missing data. This cohort
included no data for infection, pathology, diagnosis and laboratory
tests prior to CLL diagnosis and only 11 of CLL-TIM’s 33
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Fig. 3 CLL-TIM benchmarking on internal test cohort. a Kaplan–Meier graphs of infection-free, CLL treatment-free survival for CLL-TIM high-confidence
(HC) predicted high-risk (yellow curve with 95% confidence intervals) and low-risk groups (blue curve with 95% confidence intervals) on a subset of the
internal test cohort (BENCH-I, n= 288 with n= 145 high-confidence predictions). Patients in BENCH-I have full CLL-IPI and a full 2-year follow-up. p-value
is by log-rank test. b Cumulative incidence plots for CLL-TIM HC predicted high-risk and low-risk groups for CLL treatment (dark green), infection (bright
green) and death (grey) as first events on BENCH-I. c Two-year outcome PR-AUC (Precision-Recall Area-Under-Curve) for CLL-TIM and CLL-IPI on
BENCH-I. To allow for an equitable comparison, CLL-TIM HC (i.e. with removal of uncertain predictions) was benchmarked against an additional two
versions of CLL-IPI score; CLL-IPI with removal of patients in the intermediate-risk category, CLL-IPI NI_4+, and CLL-IPI with removal of the intermediate
and high-risk category, CLL-IPI NIH_7+. For box-and-whisker plots, whiskers are 95% confidence intervals generated using 5000 bootstrapped datasets
sampled from each respective cohort (See Methods), white square is the mean, centre line is the median, bounds of box are the interquartile range and
black dots are outliers. We performed model comparison using a one-tailed Mann–Whitney U-test on the mean difference of the PR-AUC over the
bootstrapped datasets. *** indicates p < 0.0005. d Average missing feature rate for patients in internal test cohort. Shaded distributions are blue – low-risk
high-confidence predictions, gray – low-confidence predictions, gold – high-confidence high-risk predictions. Missing feature rate is the percentage of CLL-
TIM’s 228 features that were missing for the given patient. Data shown for CLL-TIM’s predictions on the internal Danish test cohort (n= 646).
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laboratory test variables (Supplementary Fig. 9). Baseline variables
were all available except for del(13q). This resulted in an average
missing feature rate ranging from 42 to 58% per base-learner;
while the cohort overall had indolent baseline characteristics with
half of the high-risk patients randomized for early treatment and
thus removed prior to this analysis (Table 1). For comparison to
CLL-IPI and BENCH-I, we considered 281 patients with a full
CLL-IPI and a full 2-year follow-up (BENCH-E; Supplementary

Fig. 10c). Extracting the top 20% high-risk, and top 30% low-risk
patients (T20–30, Methods subsection Clinical trial requirements),
CLL-TIM T20–30 achieved a 2-year EFS of 43.9 and 75.3%, for
those patients predicted as high-risk and low-risk, respectively
(CI95%: 32.7–58.8% and 66.7–85.0%; Fig. 4a–c and Supplementary
Table 12). Under these substantial missing data conditions, per-
formance was still significantly better than CLL-IPI based on PR-
AUC (Fig. 3c) and MCC (Supplementary Tables 13–18).
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Fig. 4 CLL-TIM is robust to missing data on external test cohort. a Kaplan–Meier graphs of infection-free, CLL treatment-free survival for CLL-TIMT20-30

predicted high-risk and low-risk groups on a subset of the external test cohort (BENCH-E, n= 281 with n= 142 high-confidence predictions). Patients in
BENCH-E have full CLL-IPI and a full 2-year follow-up. P-value is by log-rank test. b Cumulative incidence plots for CLL-TIMT20-30 predicted high-risk and
low-risk groups for CLL treatment (dark green), infection (bright green) and death (gray) as first events on BENCH-E. c Two-year outcome PR-AUC
(Precision-Recall Area-Under-Curve) for CLL-TIM and CLL-IPI on BENCH-E. To allow for an equitable comparison, CLL-TIMT20-30 (i.e. with removal of
uncertain predictions) was benchmarked against an additional two versions of CLL-IPI score; CLL-IPI with removal of patients in the intermediate-risk
category, CLL-IPI NI_4+, and CLL-IPI with removal of the intermediate and high-risk category, CLL-IPI NIH_7+. For box-and-whisker plots, whiskers are
95% confidence intervals generated using 5000 bootstrapped datasets sampled from each respective cohort (See Methods), white square is the mean,
centre line is the median, bounds of box are the interquartile range and black dots are outliers. We performed model comparison using a one-tailed
Mann–Whitney U-test on the mean difference of the PR-AUC over the bootstrapped datasets. *** indicate p < 0.0005. d Average missing feature rate for
patients in external test cohort. Shaded distributions are blue – low-risk high-confidence predictions, gray – low-confidence predictions, gold – high-
confidence high-risk predictions. Missing feature rate is the percentage of CLL-TIM’s 228 features that were missing for the given patient. Data shown for
CLL-TIM’s predictions on the external German test cohort (n= 365).
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Addition of patient data reduces uncertainty in CLL-TIM. As a
result of the indolent baseline characteristics and missing data
conditions of BENCH-E, we observed a reduction in performance
in terms of recall (Supplementary Table 6 vs. 13) and the
detection of infection events (Fig. 3b vs. 4b) when compared to
BENCH-I. By re-simulating CLL-TIM’s predictions on BENCH-I
with similar indolent characteristics and missing data conditions
as BENCH-E, we observed a similarly low recall, with a 2-year
EFS of 61.5% and 72.1% for those patients predicted as high-risk
and low-risk respectively (CI95%: 38.5–57.3% and 73.1–84.7%,
Supplementary Fig. 11c). Upon including infection and pathology
history prior to diagnosis and including data for more laboratory
variables; we increased the detection of infections and recall by

3.4-fold and this with an improved discrimination between high-
and low-risk groups — 2-year EFS of 40.4% and 78.7% respec-
tively (CI95%: 43.8–86.5% and 66.4–78.3%, Supplementary
Fig. 11e). The addition of patient data, also had the effect of
increasing CLL-TIM’s confidence in its predictions (Fig. 5a, b),
thereby increasing the operating Hazard-Ratio of CLL-TIM
(Supplementary Fig. 6). Predictions using only baseline vari-
ables, were of mostly low-confidence (Fig. 5a). Infection and
laboratory histories had the most marked effects in increasing
CLL-TIM’s confidence, whilst pathology and diagnoses variables
had more subtle effects (Supplementary Fig. 12). The addition of
patient data from each variable category, affected the confidence
for each patient differently (Fig. 5c).
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Fig. 5 Addition of patient data increases CLL-TIM’s performance. a Distribution of CLL-TIM’s probabilistic output when making predictions using only
baseline variables. b Distribution of CLL-TIM’s probabilistic output when adding patient data for 7-year histories of laboratory, infection, pathology and
diagnoses. Predictions shown are for the internal test cohort, n= 646. Red distribution - truly high-risk patients, green distribution – truly low-risk patients.
Overlaps of the two distributions represent misclassifications. Infection and laboratory histories had the most marked effects in increasing CLL-TIM’s
confidence in its predictions (See Supplementary Fig. 12). c Predictions on a subset of five patients (P01–P05) from the test cohort. P01–P03 and P05 all had
an infection or required treatment within the first two years from CLL diagnosis. P01–P03 were misclassified with CLL-IPI (CLL-IPI score of 1: low-risk). P04
was a low-risk patient. We performed five rounds of CLL-TIM predictions on each patient, where in each round we added more data: baseline (gray);
infection histories of seven years (orange); laboratory variables up to a one year prior to CLL diagnosis (dark red); laboratory variables up to a seven years
prior to CLL diagnosis (dark purple); pathology and diagnosis variables (light blue). When predicting patients with only baseline variables, CLL-TIM only
achieved low-confidence predictions for P01–P04. By adding more data on top of baseline variables, we were able correctly classify P01–P03 as high-risk with
a high-confidence and P04 as low-risk with a high-confidence. When CLL-TIM gives a low-confidence prediction, this means that with the given patient
data, CLL-TIM is unsure of its prediction. In these situations, we can expect CLL-TIM to be operating at a Hazard-Ratio of around 2 (See Supplementary
Fig. 6c, f). The benefit of CLL-TIM is that for low-confidence predictions, we may add more patient data to try and get predictions with a high-confidence. In
this scenario CLL-TIM is more certain in its prediction and we can expect it to be operating at a HR of 7 or higher (Supplementary Fig. 6a, d).
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Immune dysfunction linked to progressive disease. To examine
the link between infections and CLL treatment as outcomes, we
compared ensemble models trained to predict the composite
outcome to models that were trained to predict CLL treatment
and models predicting infection as a first event (ENS-COMP,
which includes the CLL-TIM ensemble; ENS-TREAT and ENS-
INFEC, Supplementary Table 3). Training on infection as an
outcome in combination with CLL treatment (as in ENS-COMP
and CLL-TIM), synergistically improves the predictions of CLL
treatment (p < 0.05 with one-tailed binomial test for ENS-COMP
vs. ENS-TREAT, Fig. 6a). This result was corroborated by CLL-
TIM also outperforming CLL-IPI in predicting CLL treatment on
both internal and external cohorts (Supplementary Tables 19–24).
Considering next, patients with infection prior to CLL treatment
as an outcome, modeling only CLL treatment was not predictive
(recall 7%, Fig. 6a). However, both ENS-INFEC and ENS-COMP
models were predictive and had significantly similar recalls of
around 40% (p > 0.05, Fig. 6a). In brief, modeling only CLL
treatment was not enough to predict infection prior to CLL
treatment, and modeling infection as an outcome, while necessary
for the prediction of infections, was also somewhat predictive of
CLL treatment (See Supplementary Fig. 13 for further evidence).
Like ENS-TREAT, CLL-IPI was not predictive of infections prior
to CLL treatment (Supplementary Fig. 14a, b). To rule-out
whether this was due to CLL-IPI variables not being predictive of
infection, or due to them not being trained to predict infection as

an outcome, we trained ensembles with CLL-IPI variables to
predict both infection and treatment. Like CLL-IPI, these
ensembles were also not predictive of infection (Supplementary
Fig. 14c, d). We next assessed how the recall for infections differs
when changing the definition for this outcome (Fig. 6b, c). While
not statistically significant (p > 0.05), for high-confidence pre-
dictions, recall increased for patients with positive or multiple
blood cultures. In turn, for all outcomes, CLL-TIM achieved
significantly higher recalls than CLL-IPI.

General and infection-specific risk factors. To pinpoint features
with impact on high-risk predictions, we calculated SHAP
feature importance values31 for all of CLL-TIM’s 228 features and
ranked them according to their ability to discriminate high- and
low-risk patients (Supplementary Data 1, Methods subsection
Risk factors). Features with most discrimination (referred to as
risk factors) such as β2-microglobulin, Binet stage, and IGHV
mutational status, corroborate previously described risk factors
for CLL treatment and survival11,32. Several routine analyses also
demonstrated good discrimination (Fig. 7a). These risk factors
were separated into those specific to the detection of infection
prior to CLL treatment and those specific to the detection of CLL
treatment prior to infection (Fig. 7b, c). Here, we found that the
mean number of days between infections (7-year look-back) was
important for predicting infection prior to CLL treatment, as were
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several routine analyses (Supplementary Data 1). We observed
that very few treatment-specific risk factors contributed to
infection as a first event, while numerous infection-specific risk
factors contributed to treatment as a first event (Supplementary
Data 1). This is in line with our previous finding that while ENS-
INFEC is predictive of treatment, ENS-TREAT is not predictive
of infection. From univariate analysis of the 7288 features gen-
erated in this work, we found that for CLL-TIM’s top 50 features,
92% were significant (p < 0.05) in at least one univariate test,
while 72% were significant (p < 0.05) in all four univariate tests
(Supplementary Data 2). We also observed homogeneity for the
features exhibiting the lowest p-values with each univariate test
(Supplementary Data 3). These consisted of features based on
clinical stage, β2-microglobulin, hemoglobin and leukocytes. We
also performed the same univariate analysis but with infection (as
a first event) as the only outcome (Supplementary Data 4). Here,
all four univariate tests were dominated by infection related
features. Composite outcome risk factors (See Fig. 6a) were
confirmed significant in all four univariate tests, except for three
that were significant in only two of the four univariate tests. From
the 15 infection risk factors (Supplementary Data 1), 13 were
significant in two or more univariate tests (Supplementary
Data 4). Visualization of key risk factors identified by CLL-TIM,
showed that CLL-TIM was able to learn complex non-linear
functions (Fig. 8). For instance, depending on the value of other
features, similar levels of β2-microglobulin may contribute very

differently towards risk of a composite event. This idea of con-
ditional risk contrasts greatly to the independent and additive
contributions of factors in prognostic indices such as CLL-IPI,
with β2-microglobulin either contributing two or zero points11

Personalized risk factors and multiple etiologies of risk. While
risk factors on a population level encapsulate tendencies in a CLL
population, a next step towards personalized medicine is the
derivation of risk factors specific to each patient that drive the
prediction in a given state. As part of a web-based beta version of
CLL-TIM (Fig. 9a, CLL-TIM.org), available for prediction of
individual patient outcomes, we provide personalized risk factors
driving the patient into high- or low-risk and a confidence value
for the specific prediction (Fig. 9b). To analyze the variability, if
any, in the personalized risk factors for patients with a composite
outcome, we extracted, from the personalized risk factors of each,
the top 3 factors pushing the patients towards high-risk (Fig. 9c).
Found in 14% of the patients, the most common combination of
risk factors was Binet stage, IGHV mutation status and leukocytes
maxima in the last 3 months. For 50% of the population, 17
different combinations of 12 risk factors were found in the top 3
personalized risk factors. For characterizing the risk of the
remaining 50% of the patients, 313 combinations of 34 risk
factors were in turn required – thus highlighting the strength
and necessity of having a multiple-outlooks strategy with a
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heterogeneous set of features. For the 970 patients in the Danish
cohort with a composite outcome, we performed clustering of the
top 3 personalized risk factors with Stochastic Neighbor
Embedding33 (t-SNE – Fig. 9d) and Uniform Manifold Approx-
imation and Projection34 (UMAP - Supplementary Fig. 15).
Results from t-SNE and UMAP show that patients have distinct
clusters of personalized risk factors. Similar to previous com-
parisons35, UMAP clusters were more defined and less diffused
than those with t-SNE.

Discussion
While infection is the major cause of death in CLL1, no prog-
nostic index for prediction of infection in CLL has been presented
prior to our recent work36. A first step in attempting to change
the ramifications of immune dysfunction in CLL is to identify
high-risk patients prior to any infection or CLL treatment5. We
addressed this unmet need by developing an explainable machine
learning model based on data from 4,149 patients diagnosed with
CLL in Denmark between 2004 and 2017. CLL-TIM identifies
patients at risk of severe infection or CLL treatment within 2-
years of CLL diagnosis with high precision (0.72 CI95%:
0.63–0.81) and recall (0.75 CI95%: 0.65–0.86). Higher PR-AUC,
MCC and a clearer discrimination for 2-year EFS between high-
and low-risk patients were achieved as compared to all previous
models. CLL-TIM predicted infection and CLL treatment with
similar frequencies as first events, thus validating the ability of
CLL-TIM to identify both patients at risk of infection and in need
of CLL treatment. Predictions on the entire test cohort (n= 646)
are representative of the Danish CLL population as CLL-TIM
is modeled upon a registry with 98% coverage of patients diag-
nosed with CLL in Denmark37. However the Danish cohort
represents a more indolent population than in most other pub-
lished cohorts11,37. Patients with incomplete diagnostic work up
fare worse than patients with full diagnostic work up38. This may
affect predictions on the subset of patients with full CLL-IPI
(BENCH-I, n= 288 and BENCH-E, n= 281 cohorts). Boot-
strapping was necessary for MCC and PR-AUC, as CIs for these
metrics cannot be automatically generated by using the gaussian
approximation39. One limitation of comparing model perfor-
mance on a single test set using the bootstrap method40,41, is that
for small sample sizes, CIs were sometimes wide and overlapping.
Particularly, when low-confidence predictions were included.
However, even in these conditions, CLL-TIM still achieved sig-
nificant performance improvements over CLL-IPI.

In this work we find that using the drawing of a blood culture
as a proxy for serious clinical infection holds both prognostic
(Fig. 6b, c and Supplementary Data 1 and 4) and learnable
information (Fig. 6a and Supplementary Table 6). This agrees
with guidelines and standard practice to draw a blood culture
upon suspicion of a serious infection. We cannot rule out how-
ever, that for some infectious events, we may be annotating events
that have similar symptoms to infection but do not represent true
infections, as is also the case in the clinical setting. The increased
risk of mortality for CLL patients with infections during the first
year from diagnosis, has been demonstrated both when using a
blood culture as a proxy for infection36 and when using infections
classified as serious by physicians7,42. Although we achieved a
100% recall for positive blood cultures in CLL-TIM’s high-
confidence predictions, the patient count was too low for any
significant differences to be observed between prediction of blood
cultures with any finding and positive blood cultures. A link
between immune dysfunction and CLL aggressiveness has also
been established in our data driven approach. Analyses aimed at
understanding the link between the risk of infection and risk of
treatment showed that modeling infection together with CLL

treatment was necessary for the detection of infection prior to
CLL treatment but also improved the detection of CLL treatment
prior to infection (Fig. 6a). Thus, by combining the two clinically
interlinked outcomes of immune dysfunction leading to risk of
infection and risk of CLL treatment into a joined outcome, we
were able to draw mutually predictive information from both
event types. This also improved predictions for both outcomes.
The correlation between immune dysfunction in CLL and
aggressive disease is in accordance with recent reports of inferior
survival and TTFT for CLL patients suffering from infection
within the first year of diagnosis6. The link between immune
dysfunction and aggressive or progressive CLL is further sup-
ported by the microenvironmental interaction being fundamental
for CLL development13–16. CLL-IPI was developed for prediction
of OS and validated for TTFT but performed poorly for predic-
tion of infection. This is in line with our own ensemble models
that were trained only to predict CLL treatment not being pre-
dictive of infection. Additionally, for ensemble models using only
CLL-IPI variables but re-trained to predict the composite out-
come, prediction of infection prior to CLL treatment was
obfuscated with false-positives, resulting in low precisions. Thus,
approaching CLL modeling with a larger and more heterogeneous
set of features, together with the addition of infection as an
outcome, were necessary to improve overall detection.

Recent recommendations for machine learning implementa-
tions in clinical practice propose interpretability of predictions
along with robustness to incomplete data as the hallmarks of a
clinically viable model43. Whereas ‘opening the black-box’ by
explainable predictions as provided by CLL-TIM is key to gaining
trust in the clinical setting, we believe that an additional —
somehow overlooked — requirement, is the justification for using
a complex model. Based on a multiple-outlooks ensemble model
of 28 machine learning algorithms, trained on different feature
sets, CLL-TIM is inherently complex. From one standpoint, the
complexity can be justified as being more conducive of the reality
of CLL — a complex disease ranging from an indolent to a
rapidly fatal disease course in which tumor microenvironmental
interaction, immune dysfunction, prior infections, and comor-
bidities all impact the clinical course1,7,17,36,44,45. From an equally
pertinent stand-point however, we propose that the multiple-
outlooks strategy used for the development of CLL-TIM increases
base-learner diversity46–48, and hence by design, is the main
driving force behind CLL-TIM’s (i) robustness under high-rates
of missing data40,49, (ii) ability to generate reliable uncertainty
estimates for its predictions50, (iii) improved recall51, and (iv)
ability to generate personalized risk factors. Considering the real-
world data in the Danish CLL registry, CLL-IPI could only assess
risk for 48% of patients due to missingness. In contrast, CLL-TIM
outperforms CLL-IPI and can assess risk for any CLL patient even
without information for most variables. With a significant
increase in MCC and PR-AUC, CLL-TIM improved the recall as
compared to CLL-IPI without jeopardizing precision.

In line with work deriving uncertainty estimates from
ensembles52,53, CLL-TIM’s uncertainty estimates allows the
treating physician to assess whether a predicted risk is actually of
clinical significance for the patient. As exhibited by the low HR
for low-confidence patients (Supplementary Fig. 6c, f), a low-
confidence prediction means that for this patient, CLL-TIM can-
not give a more accurate prediction. For a high-confidence
prediction, CLL-TIM is more certain of its prediction and operates
at a HR of 7–9 (Supplementary Fig. 6a, d). A related benefit of
CLL-TIM is that upon input of further patient data, low-
confidence predictions may still be converted into high-
confidence predictions (Fig. 5). For the external German CLL7
validation cohort, we observed a lower call-rate of high-risk pre-
dictions both by CLL-IPI and CLL-TIM. Partly explaining this, is
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that half of the high-risk patients in the external German CLL7
validation cohort were randomized for early treatment and not
part of our predictions. Additionally, the external cohort has
limited data besides baseline variables, which we have shown to
have very limited separability of high-risk and low-risk patients
(Fig. 5a). Further corroboration to this was found through simu-
lations on the internal cohort, where certain high-risk patients
could only be correctly identified with the addition of infectious
history and laboratory variables. Similarly, upon performing
simulations on our internal cohort that mimic the external cohort,
both recall of high-risk predictions and detection of infections was
reduced when using only post-diagnosis data. This, especially for
those patients with indolent baseline characteristics. Given that
current prognostic models in CLL are based on a handful of
variables around time of diagnosis or treatment9–11,20–22,54, for
future modeling strategies, we recommend inclusion of laboratory
values (without categorical cut offs) and medical history including
infections pre-dating diagnosis — most particularly for those
models addressing immune dysfunction.

In contrast to models that simply add the impact of individual
risk factors9–11,20–22, we uncovered the more complex and non-
linear mechanisms by which prognostic factors contribute toward
composite risk in CLL (Fig. 8 and Supplementary Fig. 16) — this,
both on a population (Fig. 7a and Supplementary Data 4) and
individual level (Fig. 9b, c). Our data-driven approach also
identified novel prognostic factors for immune dysfunction in
CLL (Fig. 7b), and did not select for immunoglobulins (Supple-
mentary Discussion). We demonstrated that the density of
infections several years prior to CLL diagnosis was highly specific
for the risk of infection after diagnosis but prior to CLL treat-
ment. As infections remain the major cause of death in CLL6,
with increased incidence after chemoimmunotherapy2,3,8, iden-
tification of patients at risk of infection and the provision of
personalized risk factors can aid efforts aimed at personalized
treatment for CLL. The ability to derive personalized risk factors
in CLL-TIM is a culmination of efforts in data cleaning, valida-
tion, and integration by PERSIMUNE55, combined with a diverse
modeling approach developed by the multiple perspectives from a
team of physicians, molecular biologists, bioinformaticians, and
data analysts during MispCamp23; and, the use of state-of-the-art
developments in interpretable machine learning tools31,56. We
also expect that PERSIMUNE data lake will provide the basis for
automating and integrating CLL-TIM directly into the medical
record, further integrating medical AI.

The next step is using CLL-TIM for patient selection in the
investigator-initiated, randomized phase 2–3 trial within the
Nordic and the Hovon CLL study groups, the PreVent-ACaLL
trial (clinicaltrials.gov: NCT03868722). This trial investigates
whether three months of acalabrutinib and venetoclax combina-
tion targeted treatment can improve the grade ≥3 infection-free,
treatment-free survival compared to the standard-of-care obser-
vation arm of the study. Addressing the lack of prospective
validation for machine learning in the clinic57, through the
PreVent-ACaLL trial we will also be able to further assess the
predictive performance of CLL-TIM, as the observation arm and
the patients predicted with low risk or low confidence predictions
will be followed for infections and CLL treatment. To allow
assessment of CLL-TIM in clinical practice in the meantime, we
have made the model publicly available as a web-based beta
version that includes confidence estimates and personalized risk
factors (CLL-TIM.org).

Methods
Data sources. To model multiple aspects of each patient, we assembled data from
several sources (Fig. 1a) into five datasets. (1) Baseline variables taken at time of
diagnosis (±3 months). We extracted these variables from the Danish National CLL

registry and include age, gender, Binet stage, family history of CLL, Eastern
Cooperative Oncology Group (ECOG) performance status, β2-microglobulin
levels, CD38 positivity, 70 kDa ζ-associated protein (ZAP70) positivity, IGHV
status, FISH for del(13q), tri(12), del(11q) and del(17p) (Supplementary Table 25).
(2) Routine lab; Routine laboratory tests including all available biochemical blood
work-up such as hemoglobin levels, complete blood counts, and C-reactive protein
levels. (3) Microbiology including blood culture findings from the Persimune
Microbiology Database55. (4) Pathology reports (SNOMED codes used as vari-
ables) from the Danish Patobank. (5) Diagnosis codes from the Persimune Data
Warehouse55 were used as variables, i.e. International Classification of Diseases
(ICD-10 codes). In order to reduce potential bias when comparing our model to
the CLL-IPI, we did not include CLL-IPI11 scores as a variable. To keep the process
entirely data-driven for routine laboratory tests, microbiology, pathology and
diagnosis codes, we used all available patient data for modeling. Hence, any vari-
ables from these data sources that were included in the final CLL-TIM model, are,
because of data-driven methods, described in the following sections. The study was
approved by the Danish National Committee on Heath Research Ethics and
informed consent was not required for retrospectively included patients according
to Danish legislation.

Base-learner generation. In this work, we employ an ensemble modeling
approach, which is the combination of predictions from multiple classifiers to
produce a single classifier58. The aim was to make the ensemble predictions more
accurate than any of the individual classifiers included in the ensemble. This
requires accurate ensemble classifiers (referred to as base-learners in context of
ensembling) and uncorrelated predictions, i.e. allowing for errors on different
examples59. For instance, it has been shown that combining base-learners with
independent errors and with accuracy that is only slightly better than chance, as the
number of classifiers combined in an ensemble goes to infinity, the error can be
reduced to zero59. In addition, the attractive property of reducing overfitting
through ensembling46 is integrated in the design and success of recent popular
machine learning methods like XGBoost and Random Forest60,61. Although
complete independence between the base-learners is hard to achieve, there are
many ways to reduce correlation between base-learner predictions47. The entire
protocol for CLL-TIM: feature generation (described in Supplementary Methods
subsection Feature Generation); base-learner generation, ensemble generation and
ranking (described in the forthcoming Methods sections), were motivated by
producing a final ensemble with high accuracy and low correlation between its
base-learners. Aimed at generating a diverse set of base-learners, we trained 2,000
base-learners on the training cohort, where the base-learners spanned seven types
of linear and non-linear machine learning classifiers and were trained using dif-
ferent hyper-parameter settings, feature sets and target outcomes (Fig. 2d and
Supplementary Table 3). The protocol used for base-learner generation was as
follows: (i) Assignment of Target Outcome: 1000 base-learners were assigned to
predict the composite outcome of risk of infection or CLL treatment: 500 base-
learners were assigned to the CLL treatment outcome and 500 base-learners to the
infection as a first event outcome. (ii) Assignment of Algorithm Type: An algo-
rithm was randomly assigned from a choice of seven different classification algo-
rithms (K-Nearest Neighbors (KNN), Logistic Regression (LR), Elastic Network
(EN), Perceptron, Random Forest (RF), extremely randomized Trees — Extra
Trees (ET), and Extreme Gradient Boosting — XGBoost (XGB)). The choice of
these specific seven algorithms was based on their ability to model the full range of
linear to non-linear decision boundaries, their ability to produce a confidence value
associated with their prediction, and efficient training. All algorithms were
implemented using Scikit-Learn62 and the XGBoost library61. (iv) Assignment of
Hyper-Parameter Settings: Hyper-parameter settings were assigned randomly from
the ranges detailed in Supplementary Table 3. To maximize de-correlation between
base-learners of the same algorithm type, the hyper-parameters were not optimized
and remained as per their initial random assignment. (v) Feature Bagging: To
reduce the feature set size from 7288, we employed a number of feature selection
methods to rank features according to their importance in separating high-risk and
low-risk patients (Supplementary Table 3). We then trained the base-learners using
a subset of the top ranked features, where the feature set size was a randomly
assigned integer ranging from 7 to 150. This is effectively a method of feature
bagging63 that promotes feature diversity in base-learners but is still biased toward
the top ranked features. (vi) After the assignment of the target outcome, algorithm
type, hyper-parameters and feature set, we trained the base-learner on the training
cohort. We performed five repetitions of 10-fold cross-validation — identical folds
were used for different base-learners. We performed feature selection separately
within each fold to avoid data leakage across folds and overestimation of cross-
validation performance. For quality control, we then pre-filtered the set of 2000
base-learners to remove low performing base-learners. Base-learners with cross-
validation Matthews Correlation Coefficient (MCC) smaller than the respective
base-learner population mean, were not put forward for selection.

Ensemble generation. After generating a set of diverse classifiers, each with their
unique outlook into the patients’ history (Fig. 2d), we subsequently devised a
method to solve the combinatorial optimization problem of finding a subset of
base-learners that could maximize the MCC on the validation cohort (Supple-
mentary Fig. 1). To this end, we used a meta-heuristic optimization algorithm
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inspired by natural evolution called Genetic Algorithm (GA)64. The details for a
single GA run are provided in Supplementary Fig. 17 and summarized in Fig. 2e.
The GA was run 29 separate times to generate ensembles ranging from 2 to 30
base-learners.

Ensemble ranking. To select a single ensemble that was most likely to generalize
well on unseen test cohorts, the 29 ensembles generated by the GA required a
model selection procedure. Selecting as the final ensemble, the ensemble that
achieves the highest MCC on the validation cohort does not necessarily guarantee
good generalization to an unseen test cohort. This because given that a large
number of ensembles are assessed by the GA for their performance on the vali-
dation cohort, there is the risk of over-fitting to the validation cohort. Therefore,
apart from the ensembles’ performance on the validation cohort, we used six
criteria for ensemble ranking that were designed to maximize the generalization
ability of the ensemble (Supplementary Table 26). These criteria promote accuracy,
predictive and compositional dissimilarity between the base-learners. The score of
each ensemble was calculated as the average score over the six criteria after stan-
dardization of each. We then ranked all 29 ensembles (of sizes 2–30 base-learners)
according to this score and the apex ensemble (CLL-TIM) was then tested for its
generalization performance on internal and external cohorts (Table 1).

Handling of missing data. Missing data was handled over several layers in the
design of CLL-TIM. On the feature level, baseline variables were one-hot-encoded,
hence we have a feature for each baseline variable indicating when it is missing. For
the laboratory data, we created features (Lab Test Date Modeling Variables; Sup-
plementary Table 1) that are missingness indicators. In this way the learning
algorithms, through these features, can take into account recentness of the test
dates or the lack there-of. On the base-learner level, XGBoost61 is capable of
creating splits for missing data without imputation. For the other methods, we used
median imputation for their features. No imputation was performed for baseline
variables as these were one-hot-encoded. On the ensemble level, the ensemble was
designed in such a way to promote diversity in predictions (Methods subsections
Base-learner generation and Ensemble ranking), the rational being that different
parts of the ensemble may be able to compensate for missing data in others40,49.
Given that we take the average probabilistic output over all base-learners, this
means that we are implicitly down-weighting base-learner predictions with
missing data.

Benchmark models. CLL-TIM was benchmarked against the current gold stan-
dard in CLL prognostication, CLL-IPI11,65. The protocol used to generate CLL-
TIM (i.e. data-driven strategy that models patient data prior to CLL diagnosis and
predicts the composite outcome) was compared to five other protocols of gen-
erating ensembles. Details and motivations of all benchmark models and protocols
are provided in Supplementary Table 5. The protocols include: ensembles trained
to predict CLL treatment as an outcome and those that predict infection as an
outcome. This enabled us to evaluate the effect of modeling the composite outcome
of CLL treatment and infection, both separately and jointly. In addition, other
protocols included: ensembles comparing the data-driven approach of CLL-TIM to
that of two experienced physicians pre-selecting variables; ensembles comparing
the effect of modeling data prior to CLL diagnosis; and ensembles using only CLL-
IPI variables that are trained to predict the composite outcome.

Evaluation metrics. We assessed the 2-year composite outcome of risk and/or
infection using Kaplan–Meier and Aalen-Johansen plots. As 26% of the patients in
the training cohort had the composite outcome (Supplementary Fig. 1), the class-
imbalance renders common evaluation criteria such as accuracy and the Area-
Under-Curve (AUC) of the receiver-operating-characteristics (ROC) to have
overoptimistic results30. We thus opted for metrics that are insensitive to class-
imbalance, namely the Matthews Correlation Coefficient (MCC):

MCC ¼ TP ´TN� FP ´ FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp ð1Þ

In detail, we calculated MCC using correct high-risk and low-risk predictions as
true positives (TP) and true negatives (TN), respectively, while incorrect high-risk
and low-risk predictions were used as false positives (FP) and false negatives (FN),
respectively. For MCC, a value of −1, 0, and +1 correspond to an exact negative
correlation, random prediction, and an exact positive correlation; We used
precision to evaluate the proportion of truly high-risk patients from all the
predicted high-risk patients; Recall to evaluate the proportion of predicted high-
risk patients from the truly high-risk population; The precision and recall curve
(PR-AUC) to assess performance at multiple decision boundary thredhsolds29.
Whereas the MCC evaluates predictor performance for discrete outputs such as
high-risk (1) and low-risk (0) at a fixed threshold, the PR-AUC evaluates the
ranking ability of the algorithm. For instance, CLL-TIM outputs a continuous value
ranging from 0 to 1, where anything above 0.5 is considered as a high-risk
prediction and below zero considered as a low-risk prediction. The PR-AUC
calculates the precision and recall of the algorithm at all possible thresholds from
the continuous values generated by CLL-TIM. When used for the CLL-IPI11, the
precision and recall were calculated for each possible CLL-IPI score of 0–10 points.

This renders comparison of two algorithms without any bias that is introduced
when committing to a single threshold.

For the above metrics, we generated confidence intervals (CIs) using 5,000
bootstrap sampled datasets of the internal test cohort and the CLL7 external
cohort41,66. When algorithm variations generated predictions on different subsets
from these cohorts, a new set of 5,000 bootstraps were generated. Sampling was
performed with replacement and stratified to preserve original high-risk to low-risk
patient ratios within each bootstrapped dataset. We then generated CIs of 95% for
all metrics over the bootstrapped datasets. We performed comparison of CLL-TIM
to CLL-IPI score models using one-tailed Wilcoxon signed-rank test on the
difference in means of MCC and PR-AUC over the bootstrapped datasets. For
comparison of models, which predicted on different subsets of the cohort like CLL-
TIM High-Confidence (HC) and CLL-IPI NIH_7+/ CLL-IPI NI_4+, we
performed a one-tailed Mann–Whitney U-Test on the difference in means of MCC
and PR-AUC over the subsets of the bootstrapped datasets. As mentioned, we also
generated ensemble models with different protocols than CLL-TIM (ENS-
COMPDC, ENS-COMP3m, ENS-COMPCLL-IPI). For comparison of the protocol
that generated CLL-TIM (ENS-COMP) to the different protocols used as
benchmarks (ENS-COMPDC, ENS-COMP3m, ENS-COMPCLL-IPI) we used a one-
tailed Wilcoxon signed rank test on the difference in 29 mean MCCs. We generated
29 ensembles (Size 2–30 base-learners) for each protocol, and pairing for the
Wilcoxon signed rank test was performed with ensemble size.

Clinical trial requirements. In parallel with development of CLL-TIM, we aimed
at implementing CLL-TIM for the selection of patients for a clinical phase II trial of
preemptive BTK and BCL2 inhibition for newly diagnosed patients with CLL at
high-risk of infection or treatment (PreVent-ACaLL, NCT03868722). To ensure a
clinically meaningful hypothesis to be tested in the trial, the following requirements
for the CLL-TIM algorithm were predefined:

(i) High-risk patients should have at least a 65% 2-year risk of infection or CLL
treatment, and only patients predicted with high-confidence to be high-risk
should be eligible for enrollment. At least 20% of patients should fulfilling
these criteria.

(ii) High-confidence predictions on at least 50% of the patients in the Danish
nation-wide CLL registry should be available.

The high-confidence requirement was designed such as to minimize the risk of
initiating the preemptive therapy in low-risk patients which CLL-TIM mislabels as
high-risk. To derive high-confidence predictions from CLL-TIM, we used CLL-
TIM’s probabilistic risk (PR) through a process called soft-voting53. Using soft-
voting in CLL-TIM, a patient was predicted as high-risk if the average PR of CLL-
TIM’s base-learners was greater than 0.5. This averaging was used as an estimate of
predictive uncertainty (or predictive confidence). The rationale being that if the
average PR was close 0 or 1 (i.e. not close to 0.5) then most of the base-learners in
CLL-TIM agreed on a low- or high-risk prediction, respectively, and accordingly
treated as high-confidence. Given this, the next step was thus to derive thresholds for
what is considered as a high-confidence high-risk prediction, an uncertain prediction
and a high-confidence low-risk prediction. For extracting the lower-bound threshold
for a high-confidence high-risk prediction, we gradually reduced CLL-TIM’s average
PR from 1 until producing 20% high-risk predictions (criteria i) on the validation
cohort in accordance with our clinical trial requirement. For high-confidence low-
risk prediction, we similarly increased CLL-TIM’s average PR threshold from 0 until
producing 30% low-risk predictions (resulting in high-confidence predictions on
50% of the cohort i.e. criteria ii). The patients, for whom CLL-TIM’s probabilistic
output did not satisfy the thresholds for a high-confidence prediction, were
considered as low-confidence/uncertain predictions. Using these requirements, this
resulted in a lower-bound (average PR > 0.58) and upper-bound threshold (average
PR < 0.28) for a high-confidence high-risk and high-confidence low-risk prediction.

Risk factors. To rank features according to their importance in the model pre-
diction, we used SHapley Additive exPlanations (SHAP). SHAP is a unified fra-
mework for explaining the output of any machine learning model31,56. For the
post-learning stage, it was important to understand how the features contributed to
the predictive performance of CLL-TIM. Therefore, we were limited to using the
in-built feature importance of each base-learner in CLL-TIM, such as XGB Feature
Selection (FS), RF-FS etc. These methods do not satisfy the feature attribution
property of consistency, i.e. a model may rely more than another model on a given
feature, but it may still assign a lower importance31,67. Additionally, we needed a
method that provided a consistent metric enabling us to generate the average
feature importance values to create a single ranking for the ensemble. For the
derivation of personalized risk factors, we needed a ranking method that could
provide local/case-wise feature importance’s for each patient and each base-learner.
SHAP satisfies the feature attribution property of consistency31,67, provides a single
metric for feature importance across different learning algorithms and provides
local interpretability for derivation of personalized risk factors31,67. An alternative
to using SHAP is LIME68, as it satisfies most of our requirements but the con-
sistency property of feature attribution that SHAP guarantees, may be violated in
certain instances with LIME31. For any given feature, the SHAP value (averaged
across all of CLL-TIM’s base-learners) quantifies the contribution of that feature
towards predicting a patient as high or low risk. Negative SHAP values indicate
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that the feature pushed a patient towards low-risk and positive values towards
high-risk. SHAP values for the same feature may differ across patients. Thus for
each patient, we ranked the top low-risk and high-risk features (according to their
patient-specific SHAP value), thus representing personalized risk factors. For this,
we averaged the SHAP value for each feature across all the base-learners in CLL-
TIM and then displayed the top five risk factors pushing the patient towards low-
risk and those pushing the patients towards high-risk. For population risk factors,
the SHAP values were averaged across all patients in the training, validation and
test cohorts. “Kernel SHAP explainer” was used for Logistic Regression and Elastic
Network base-learners. “Tree SHAP explainer” was used for the Extra Trees,
Random Forest and XGBoost tree-based models. We also perform univariate tests
for all 7288 features and CLL-TIM’s features using Student’s t-Test, ANOVA F-
Value, Mann–Whitney U-Test and Kruskal–Wallis tests. This enables us to con-
firm the risk factors discovered by CLL-TIM and SHAP, for their sole predictive
power discriminating between high-risk and low-risk patients.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The individual patient level data that support the findings of this study are available from
the corresponding author upon reasonable request. As the individual patient level data
cannot be anonymized, only pseudonymized, according to Danish and EU legislation, the
data cannot be deposited in a public repository. However, the authors provide a data
repository with individual patient level data that can be made available with 2-factor
authentication for researchers on request. The remaining data is available in the article
and supplementary information files.

Code availability
Code for CLL-TIM feature encoding, base-learner prediction and generation of
personalized risk-factors is available at https://github.com/RA19/clltim.
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