235 research outputs found

    Prevalence of mental disorders and torture among Tibetan refugees: A systematic review

    Get PDF
    BACKGROUND: Many Tibetan refugees flee Tibet in order to escape physical and mental hardships, and to access the freedoms to practice their culture and religion. We aimed to determine the prevalence of mental illnesses within the refugee population and determine the prevalence of previous torture reported within this population. METHODS: We performed a systematic literature search of 10 electronic databases from inception to May 2005. In addition, we searched the internet, contacted all authors of located studies, and contacted the Tibetan Government-in-exile, to locate unpublished studies. We included any study reporting on prevalence of mental illness within the Tibetan refugee populations. We determined study quality according to validation, translation, and interview administration. We calculated proportions with exact confidence intervals. RESULTS: Five studies that met our inclusion criteria (total n = 410). All studies were conducted in North India and 4 were specifically in adult populations. Four studies provided details on the prevalence of torture and previous imprisonment within the populations. The prevalence of post-traumatic stress disorder ranged from 11–23%, anxiety ranged from 25–77%, and major depression ranged from 11.5–57%. CONCLUSION: Our review indicates that the prevalence of serious mental health disorders within this population is elevated. The reported incidence of torture and imprisonment is a possible contributor to the illnesses. Non-government organizations and international communities should be aware of the human rights abuses being levied upon this vulnerable population and the mental health outcomes that may be associated with it

    Trauma, poverty and mental health among Somali and Rwandese refugees living in an African refugee settlement – an epidemiological study

    Get PDF
    Onyut LP, Neuner F, Ertl V, Schauer E, Odenwald M, Elbert T. Trauma, poverty and mental health among Somali and Rwandese refugees living in an African refugee settlement – an epidemiological study. Conflict and Health. 2009;3(1):6.Background: The aim of this study was to establish the prevalence of posttraumatic stress disorder (PTSD) and depression among Rwandese and Somali refugees resident in a Ugandan refugee settlement, as a measure of the mental health consequences of armed conflict, as well as to inform a subsequent mental health outreach program. The study population comprised a sample from 14400 (n = 519 Somali and n = 906 Rwandese) refugees resident in Nakivale refugee settlement in South Western Uganda during the year 2003. Methods: The Posttraumatic Diagnostic Scale (PDS) and the Hopkins Symptom Checklist 25 were used to screen for posttraumatic stress disorder and depression. Results: Thirty two percent of the Rwandese and 48.1% of the Somali refugees were found to suffer from PTSD. The Somalis refugees had a mean of 11.95 (SD = 6.17) separate traumatic event types while the Rwandese had 8.86 (SD = 5.05). The Somalis scored a mean sum score of 21.17 (SD = 16.19) on the PDS while the Rwandese had a mean sum score of 10.05 (SD = 9.7). Conclusion: Mental health consequences of conflict remain long after the events are over, and therefore mental health intervention is as urgent for post-conflict migrant populations as physical health and other emergency interventions. A mental health outreach program was initiated based on this study

    Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution

    Full text link
    [EN] A poly(L-lactic acid) scaffold prepared by a combination of freeze-extraction and porogen-leaching methods was submitted to static degradation in a phosphate-buffered saline solution at pH 7.4 and 37 C for up to 12 months. After 6 months of degradation, the scaffold maintained its integrity, although noticeable changes in its permeability and pore size were recorded. After 12 months, scanning electron microscopy pictures showed that most of the trabeculae were broken, and the sample disaggregated under minimum loading. Neither weight loss nor crystallinity changes in the first heating calorimetric scan were observed during the degradation experiment. However, after 12 months, a rise in the crystallinity from 13 to 38% and a drop in the glass-transition temperature from 58 to 54 C were measured in the second heating scan. The onset of thermal degradation moved from 300 to 210 C after 12 months. Although the elastic modulus suffered only a very slight reduction with degradation time, the aggregate modulus decreased 44% after 6 months.The authors acknowledge the support of the Instituto de Salud Carlos III, Ministerio de Economıa y Competitividad, and the European Commission through FP7-ERANet EuroNanoMed 2011 PI11/03032 and FP7-PEOPLE-2012-IAPP (contract grant number PIAP-GA-2012–324386). The Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, and Consolider Program. Biomedical Research Networking Center actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors also thank the Tissue Characterization Platform of the Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine for its technical support. They also thank the Linguistic Assistance Services of the Language Centre, Universitat Politecnica de Valencia, for their help in revising this article.Deplaine, H.; Acosta-Santamaría, VA.; Vidaurre Garayo, AJ.; Gómez Ribelles, JL.; Doblare Castellano, M.; Ochoa-Garrido, I.; Gallego Ferrer, G. (2014). Evolution of the Properties of a Poly(L-lactic acid) Scaffold with Double Porosity During In Vitro Degradation in a Phosphate-Buffered Saline Solution. Journal of Applied Polymer Science. 131:40956-40966. https://doi.org/10.1002/APP.40956S4095640966131Zhao, J., Yuan, X., Cui, Y., Ge, Q., & Yao, K. (2003). Preparation and characterization of poly(L-lactide)/ poly(?-caprolactone) fibrous scaffolds for cartilage tissue engineering. Journal of Applied Polymer Science, 91(3), 1676-1684. doi:10.1002/app.13323Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124. doi:10.1163/156856201744489Butler, D. L., Goldstein, S. A., & Guilak, F. (2000). Functional Tissue Engineering: The Role of Biomechanics. Journal of Biomechanical Engineering, 122(6), 570-575. doi:10.1115/1.1318906Budyanto, L., Goh, Y. Q., & Ooi, C. P. (2008). Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction. Journal of Materials Science: Materials in Medicine, 20(1), 105-111. doi:10.1007/s10856-008-3545-8Woodruff, M. A., Lange, C., Reichert, J., Berner, A., Chen, F., Fratzl, P., … Hutmacher, D. W. (2012). Bone tissue engineering: from bench to bedside. Materials Today, 15(10), 430-435. doi:10.1016/s1369-7021(12)70194-3Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524. doi:10.1038/nmat1421Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6Chiquet, M., Renedo, A. S., Huber, F., & Flück, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73-80. doi:10.1016/s0945-053x(03)00004-0Diego, R. B., Estellés, J. M., Sanz, J. A., García-Aznar, J. M., & Sánchez, M. S. (2007). Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81B(2), 448-455. doi:10.1002/jbm.b.30683Pitt, C. G., Chasalow, F. I., Hibionada, Y. M., Klimas, D. M., & Schindler, A. (1981). Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone)in vivo. Journal of Applied Polymer Science, 26(11), 3779-3787. doi:10.1002/app.1981.070261124Lu, L., Peter, S. J., Lyman, M. D., Lai, H.-L., Leite, S. M., A. Tamada, J., … Mikos, A. G. (2000). In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials, 21(15), 1595-1605. doi:10.1016/s0142-9612(00)00048-xLu, L., Peter, S. J., D. Lyman, M., Lai, H.-L., Leite, S. M., Tamada, J. A., … Mikos, A. G. (2000). In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams. Biomaterials, 21(18), 1837-1845. doi:10.1016/s0142-9612(00)00047-8Odelius, K., Höglund, A., Kumar, S., Hakkarainen, M., Ghosh, A. K., Bhatnagar, N., & Albertsson, A.-C. (2011). Porosity and Pore Size Regulate the Degradation Product Profile of Polylactide. Biomacromolecules, 12(4), 1250-1258. doi:10.1021/bm1015464GONG, Y., ZHOU, Q., GAO, C., & SHEN, J. (2007). In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomaterialia, 3(4), 531-540. doi:10.1016/j.actbio.2006.12.008Zhao, J., Han, W., Tu, M., Huan, S., Zeng, R., Wu, H., … Zhou, C. (2012). Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Materials Science and Engineering: C, 32(6), 1496-1502. doi:10.1016/j.msec.2012.04.031Hakkarainen, M., Albertsson, A.-C., & Karlsson, S. (1996). Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability, 52(3), 283-291. doi:10.1016/0141-3910(96)00009-2Zhang, X., Espiritu, M., Bilyk, A., & Kurniawan, L. (2008). Morphological behaviour of poly(lactic acid) during hydrolytic degradation. Polymer Degradation and Stability, 93(10), 1964-1970. doi:10.1016/j.polymdegradstab.2008.06.007Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., & Lee, S.-Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24(7), 1167-1173. doi:10.1016/s0142-9612(02)00466-0Thomson, R. C., Wake, M. C., Yaszemski, M. J., & Mikos, A. G. (1995). Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science, 245-274. doi:10.1007/3540587888_18Li, W.-J., & Tuan, R. S. (2005). Polymeric Scaffolds for Cartilage Tissue Engineering. Macromolecular Symposia, 227(1), 65-76. doi:10.1002/masy.200550906Ma, J., He, X., & Jabbari, E. (2010). Osteogenic Differentiation of Marrow Stromal Cells on Random and Aligned Electrospun Poly(l-lactide) Nanofibers. Annals of Biomedical Engineering, 39(1), 14-25. doi:10.1007/s10439-010-0106-3Dai, L., Li, D., & He, J. (2013). Degradation of graft polymer and blend based on cellulose and poly(L-lactide). Journal of Applied Polymer Science, 130(4), 2257-2264. doi:10.1002/app.39451Vieira, A. C., Vieira, J. C., Ferra, J. M., Magalhães, F. D., Guedes, R. M., & Marques, A. T. (2011). Mechanical study of PLA–PCL fibers during in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials, 4(3), 451-460. doi:10.1016/j.jmbbm.2010.12.006Gaona, L. A., Gómez Ribelles, J. L., Perilla, J. E., & Lebourg, M. (2012). Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polymer Degradation and Stability, 97(9), 1621-1632. doi:10.1016/j.polymdegradstab.2012.06.031Tsuji, H., Mizuno, A., & Ikada, Y. (2000). Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-termin vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. Journal of Applied Polymer Science, 77(7), 1452-1464. doi:10.1002/1097-4628(20000815)77:73.0.co;2-sTsuji, H., & Ikada, Y. (2000). Properties and morphology of poly( l -lactide) 4. Effects of structural parameters on long-term hydrolysis of poly( l -lactide) in phosphate-buffered solution. Polymer Degradation and Stability, 67(1), 179-189. doi:10.1016/s0141-3910(99)00111-1Freyman, T. M., Yannas, I. V., & Gibson, L. J. (2001). Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science, 46(3-4), 273-282. doi:10.1016/s0079-6425(00)00018-9Li, S., de Wijn, J. R., Li, J., Layrolle, P., & de Groot, K. (2003). Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio. Tissue Engineering, 9(3), 535-548. doi:10.1089/107632703322066714Wagoner Johnson, A. J., & Herschler, B. A. (2011). A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomaterialia, 7(1), 16-30. doi:10.1016/j.actbio.2010.07.012Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039Santamaría, V. A., Deplaine, H., Mariggió, D., Villanueva-Molines, A. R., García-Aznar, J. M., Ribelles, J. L. G., … Ochoa, I. (2012). Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 358(23), 3141-3149. doi:10.1016/j.jnoncrysol.2012.08.001Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Moltó, F., … Prósper, F. (2012). Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1737-1750. doi:10.1007/s00167-012-2148-6Deplaine, H., Lebourg, M., Ripalda, P., Vidaurre, A., Sanz-Ramos, P., Mora, G., … Gallego Ferrer, G. (2012). Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(1), 173-186. doi:10.1002/jbm.b.32831Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6Alberich-Bayarri, A., Moratal, D., Ivirico, J. L. E., Hernández, J. C. R., Vallés-Lluch, A., Martí-Bonmatí, L., … Salmerón-Sánchez, M. (2009). Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 191-202. doi:10.1002/jbm.b.31389Mollica, F., Ventre, M., Sarracino, F., Ambrosio, L., & Nicolais, L. (2007). Implicit constitutive equations in the modeling of bimodular materials: An application to biomaterials. Computers & Mathematics with Applications, 53(2), 209-218. doi:10.1016/j.camwa.2006.02.020TURNER, C. H. (2006). Bone Strength: Current Concepts. Annals of the New York Academy of Sciences, 1068(1), 429-446. doi:10.1196/annals.1346.039HARLEY, B., LEUNG, J., SILVA, E., & GIBSON, L. (2007). Mechanical characterization of collagen–glycosaminoglycan scaffolds. Acta Biomaterialia, 3(4), 463-474. doi:10.1016/j.actbio.2006.12.009DiSilvestro, M. R., & Suh, J.-K. F. (2001). A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. Journal of Biomechanics, 34(4), 519-525. doi:10.1016/s0021-9290(00)00224-4Jurvelin, J. S., Buschmann, M. D., & Hunziker, E. B. (1997). Optical and mechanical determination of poisson’s ratio of adult bovine humeral articular cartilage. Journal of Biomechanics, 30(3), 235-241. doi:10.1016/s0021-9290(96)00133-9Korhonen, R. ., Laasanen, M. ., Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H. ., & Jurvelin, J. . (2002). Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. Journal of Biomechanics, 35(7), 903-909. doi:10.1016/s0021-9290(02)00052-0Acosta Santamaría, V. A., García Aznar, J. M., Ochoa, I., & Doblare, M. (2012). Effect of Sample Pre-Contact on the Experimental Evaluation of Cartilage Mechanical Properties. Experimental Mechanics, 53(6), 911-917. doi:10.1007/s11340-012-9698-xOchoa, I., Sanz-Herrera, J. A., García-Aznar, J. M., Doblaré, M., Yunos, D. M., & Boccaccini, A. R. (2009). Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. Journal of Biomechanics, 42(3), 257-260. doi:10.1016/j.jbiomech.2008.10.030Chor, M. V., & Li, W. (2006). A permeability measurement system for tissue engineering scaffolds. Measurement Science and Technology, 18(1), 208-216. doi:10.1088/0957-0233/18/1/026Al-Munajjed, A. A., Hien, M., Kujat, R., Gleeson, J. P., & Hammer, J. (2008). Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. Journal of Materials Science: Materials in Medicine, 19(8), 2859-2864. doi:10.1007/s10856-008-3422-5Sanz-Herrera, J. A., Kasper, C., van Griensven, M., Garcia-Aznar, J. M., Ochoa, I., & Doblare, M. (2008). Mechanical and flow characterization of Sponceram® carriers: Evaluation by homogenization theory and experimental validation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87B(1), 42-48. doi:10.1002/jbm.b.31065Truscello, S., Kerckhofs, G., Van Bael, S., Pyka, G., Schrooten, J., & Van Oosterwyck, H. (2012). Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomaterialia, 8(4), 1648-1658. doi:10.1016/j.actbio.2011.12.021Castilla-Cortázar, I., Más-Estellés, J., Meseguer-Dueñas, J. M., Escobar Ivirico, J. L., Marí, B., & Vidaurre, A. (2012). Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polymer Degradation and Stability, 97(8), 1241-1248. doi:10.1016/j.polymdegradstab.2012.05.038Tsuji, H., & Ikada, Y. (1996). Blends of isotactic and atactic poly(lactide)s: 2. Molecular-weight effects of atactic component on crystallization and morphology of equimolar blends from the melt. Polymer, 37(4), 595-602. doi:10.1016/0032-3861(96)83146-6Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323tHöglund, A., Odelius, K., Hakkarainen, M., & Albertsson, A.-C. (2007). Controllable Degradation Product Migration from Cross-Linked Biomedical Polyester-Ethers through Predetermined Alterations in Copolymer Composition. Biomacromolecules, 8(6), 2025-2032. doi:10.1021/bm070292xPersenaire, O., Alexandre, M., Degée, P., & Dubois, P. (2001). Mechanisms and Kinetics of Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules, 2(1), 288-294. doi:10.1021/bm005631

    Women in post-trafficking services in moldova: diagnostic interviews over two time periods to assess returning women's mental health

    Get PDF
    BACKGROUND: Trafficking in women is a widespread human rights violation commonly associated with poor mental health. Yet, to date, no studies have used psychiatric diagnostic assessment to identify common forms of mental distress among survivors returning to their home country. METHODS: A longitudinal study was conducted of women aged 18 and over who returned to Moldova between December 2007 and December 2008 registered by the International Organisation for Migration as a survivor of human trafficking. Psychiatric diagnoses in women at a mean of 6 months after return (range 2-12 months) were made by a trained Moldavian psychiatrist using the Structured Clinical Interview for DSM-IV, and compared with diagnoses recorded in the same women within 5 days of return. We described the socio-demographic characteristics of the women in the sample including both pre and post-trafficking information. We then described the distribution of mental health diagnoses recorded during the crisis intervention phase (1-5 days after return) and the re-integration phase (2-12 months after return). We compared diagnoses at the patient level between the two time points by tabulating the diagnoses and carrying out a kappa test of agreement and the Stuart-Maxwell test for marginal homogeneity (an extension of the McNemar test to kxk table). RESULTS: 120/176 (68%) eligible women participated. At 2-12 months after their return, 54% met criteria for at least one psychiatric diagnoses comprising post-traumatic stress disorder (PTSD) alone (16%); co-morbid PTSD (20%); other anxiety or mood disorder (18%). 85% of women who had been diagnosed in the crisis phase with co-morbid PTSD or with another anxiety or mood disorder sustained a diagnosis of any psychiatric disorder when followed up during rehabilitation. CONCLUSIONS: Trafficked women returning to their country of origin are likely to suffer serious psychological distress that may endure well beyond the time they return. Women found to have co-morbid PTSD or other forms of anxiety and depression immediately post-return should be offered evidenced-based mental health treatment for at least the standard 12-month period of rehabilitation

    Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    Get PDF
    International audienceMagic-angle spinning solid-state NMR spectroscopy is an important technique to study mo- lecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecu- lar sciences. Here we provide an overview of experimental approaches to study molecular dy- namics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin re- laxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Ex- perimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct infor- mation about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their ap- plication, we close by discussing a small number of recent dynamics studies, where the dy- namic properties of proteins in crystals are compared to those in solution

    Escape of HIV-1-Infected Dendritic Cells from TRAIL-Mediated NK Cell Cytotoxicity during NK-DC Cross-Talk—A Pivotal Role of HMGB1

    Get PDF
    Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them (“editing process”) at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DCHIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DCHIV. The escape of DCHIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DCHIV cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DCHIV. Finally, we demonstrate that restoration of DCHIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DCHIV survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs
    corecore