1,423 research outputs found

    Finite-size scaling from self-consistent theory of localization

    Full text link
    Accepting validity of self-consistent theory of localization by Vollhardt and Woelfle, we derive the finite-size scaling procedure used for studies of the critical behavior in d-dimensional case and based on the use of auxiliary quasi-1D systems. The obtained scaling functions for d=2 and d=3 are in good agreement with numerical results: it signifies the absence of essential contradictions with the Vollhardt and Woelfle theory on the level of raw data. The results \nu=1.3-1.6, usually obtained at d=3 for the critical exponent of the correlation length, are explained by the fact that dependence L+L_0 with L_0>0 (L is the transversal size of the system) is interpreted as L^{1/\nu} with \nu>1. For dimensions d\ge 4, the modified scaling relations are derived; it demonstrates incorrectness of the conventional treatment of data for d=4 and d=5, but establishes the constructive procedure for such a treatment. Consequences for other variants of finite-size scaling are discussed.Comment: Latex, 23 pages, figures included; additional Fig.8 is added with high precision data by Kramer et a

    Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d>2?

    Full text link
    An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point is splitted into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards and Thouless, 1972; Last and Thouless, 1974; Schreiber, 1985; 1990). The possibility of restoring the conventional picture still exists but requires a radical reinterpretetion of the raw numerical data.Comment: PDF, 11 page

    The Aharonov-Bohm effect in graphene rings

    Full text link
    This is a review of electronic quantum interference in mesoscopic ring structures based on graphene, with a focus on the interplay between the Aharonov-Bohm effect and the peculiar electronic and transport properties of this material. We first present an overview on recent developments of this topic, both from the experimental as well as the theoretical side. We then review our recent work on signatures of two prominent graphene-specific features in the Aharonov-Bohm conductance oscillations, namely Klein tunneling and specular Andreev reflection. We close with an assessment of experimental and theoretical development in the field and highlight open questions as well as potential directions of the developments in future work.Comment: review article for "Special Issue on Graphene", to appear in "Solid State Communications

    An electrostatic interaction between TEA and an introduced pore aromatic drives spring-in-the-door inactivation in Shaker potassium channels

    Get PDF
    Slow inactivation of Kv1 channels involves conformational changes near the selectivity filter. We examine such changes in Shaker channels lacking fast inactivation by considering the consequences of mutating two residues, T449 just external to the selectivity filter and V438 in the pore helix near the bottom of the selectivity filter. Single mutant T449F channels with the native V438 inactivate very slowly, and the canonical foot-in-the-door effect of extracellular tetraethylammonium (TEA) is not only absent, but the time course of slow inactivation is accelerated by TEA. The V438A mutation dramatically speeds inactivation in T449F channels, and TEA slows inactivation exactly as predicted by the foot-in-the-door model. We propose that TEA has this effect on V438A/T449F channels because the V438A mutation produces allosteric consequences within the selectivity filter and may reorient the aromatic ring at position 449. We investigated the possibility that the blocker promotes the collapse of the outer vestibule (spring-in-the-door) in single mutant T449F channels by an electrostatic attraction between a cationic TEA and the quadrupole moments of the four aromatic rings. To test this idea, we used in vivo nonsense suppression to serially fluorinate the introduced aromatic ring at the 449 position, a manipulation that withdraws electrons from the aromatic face with little effect on the shape, net charge, or hydrophobicity of the aromatic ring. Progressive fluorination causes monotonically enhanced rates of inactivation. In further agreement with our working hypothesis, increasing fluorination of the aromatic gradually transforms the TEA effect from spring-in-the-door to foot-in-the-door. We further substantiate our electrostatic hypothesis by quantum mechanical calculations

    A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What it is to be Creative

    Get PDF
    Computational creativity is a flourishing research area, with a variety of creative systems being produced and developed. Creativity evaluation has not kept pace with system development with an evident lack of systematic evaluation of the creativity of these systems in the literature. This is partially due to difficulties in defining what it means for a computer to be creative; indeed, there is no consensus on this for human creativity, let alone its computational equivalent. This paper proposes a Standardised Procedure for Evaluating Creative Systems (SPECS). SPECS is a three-step process: stating what it means for a particular computational system to be creative, deriving and performing tests based on these statements. To assist this process, the paper offers a collection of key components of creativity, identified empirically from discussions of human and computational creativity. Using this approach, the SPECS methodology is demonstrated through a comparative case study evaluating computational creativity systems that improvise music

    Price discovery in dual‐class shares across multiple markets

    Get PDF
    This paper proposes a new measure of price discovery that uses the spectral decomposition. The methodology is especially important in the context of large price systems, such as interest rate parities with spot and futures contracts or dual-class shares in multiple markets. We employ high frequency data to study price discovery in dual-class Brazilian stocks and their ADRs. We find that the foreign market is at least as informative as the home market and that shocks in the dual-class premium entail a permanent effect in normal times, but transitory in periods of financial distress

    Fractal superconductivity near localization threshold

    Full text link
    We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk "poor conductors" in which Fermi energy EFE_F is located in the region of localized states not so far from the Anderson mobility edge EcE_c. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model. Our theoretical analysis is based on the analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems. We identify three distinct phases: 'critical' superconductive state formed at EF=EcE_F=E_c, superconducting state with a strong pseudogap, realized due to pairing of weakly localized electrons and insulating state realized at EFE_F still deeper inside localized band. The 'critical' superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gaped state is the presence of two independent energy scales: superconducting gap Δ\Delta, that is due to many-body correlations and a new "pseudogap" energy scale ΔP\Delta_P which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive TcT_c. Two gap nature of the "pseudo-gaped superconductor" is shown to lead to a number of unusual physical properties.Comment: 110 pages, 39 figures. The revised version corrects a number of typos, adds references and discussion of recent result

    Seasonal evolution of the Yellow Sea Cold Water Mass and its interactions with ambient hydrodynamic system

    Get PDF
    The Yellow Sea Cold Water Mass (YSCWM) is an important component of the hydrodynamic system in the South Yellow Sea (SYS). However, its intricate interactions with the ambient flows over long time scales are not fully understood. This paper presents the analysis of the data set obtained from a seabed‐mounted Acoustic Doppler Current Profiler (ADCP) deployed for nearly 1 year in the western SYS. It allowed us to study the evolution of YSCWM, including the seasonal changes of tidal currents, near‐inertial oscillations (NIOs), and the wind‐driven currents due to typhoons and winter storms. Strong NIOs were found near the bottom of mixed layer and in the pycnocline with nearly opposite current directions, with maximum velocity of nearly 20 cm·s−1 in summer. The YSCWM can also inhibit the direct downward energy transport in the water column due to typhoons. Conversely, the hydrodynamic system also feeds back to influence the change of YSCWM. A large current shear (S) of 20 cm·s−1·m−1 is generated near the top of pycnocline. Generally, the intensity and depth of the pycnocline determine S's magnitude and vertical location, respectively. Based on the monthly averaged density profile data, the Richardson number and wavelet analysis, the NIOs are considered to be capable of inducing predominant shear instability around the pycnocline. However, the NIOs are not strong enough to influence the lower YSCWM. In addition, in autumn, each fortnightly spring tide corresponds with a bottom temperature increase of nearly 2°C, indicating that tidal currents are the leading hydrodynamic driving force to decline the YSCWM

    Developing cancer warning statements for alcoholic beverages

    Get PDF
    Background: There is growing evidence of the increased cancer risk associated with alcohol consumption, but this is not well understood by the general public. This study investigated the acceptability among drinkers of cancer warning statements for alcoholic beverages. Methods: Six focus groups were conducted with Australian drinkers to develop a series of cancer-related warning statements for alcohol products. Eleven cancer warning statements and one general health warning statement were subsequently tested on 2,168 drinkers via an online survey. The statements varied by message frame (positive vs negative), cancer reference (general vs specific), and the way causality was communicated (‘increases risk of cancer’ vs ‘can cause cancer’). Results: Overall, responses to the cancer statements were neutral to favorable, indicating that they are unlikely to encounter high levels of negative reaction from the community if introduced on alcoholic beverages. Females, younger respondents, and those with higher levels of education generally found the statements to be more believable, convincing, and personally relevant. Positively framed messages, those referring to specific forms of cancer, and those using ‘increases risk of cancer’ performed better than negatively framed messages, those referring to cancer in general, and those using the term ‘can cause cancer’. Conclusion: Cancer warning statements on alcoholic beverages constitute a potential means of increasing awareness about the relationship between alcohol consumption and cancer risk
    corecore