8,236 research outputs found
Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma.
Mice in which lung epithelial cells can be induced to express an oncogenic Kras(G12D) develop lung adenocarcinomas in a manner analogous to humans. A myriad of genetic changes accompany lung adenocarcinomas, many of which are poorly understood. To get a comprehensive understanding of both the transcriptional and post-transcriptional changes that accompany lung adenocarcinomas, we took an omics approach in profiling both the coding genes and the non-coding small RNAs in an induced mouse model of lung adenocarcinoma. RNAseq transcriptome analysis of Kras(G12D) tumors from F1 hybrid mice revealed features specific to tumor samples. This includes the repression of a network of GTPase-related genes (Prkg1, Gnao1 and Rgs9) in tumor samples and an enrichment of Apobec1-mediated cytosine to uridine RNA editing. Furthermore, analysis of known single-nucleotide polymorphisms revealed not only a change in expression of Cd22 but also that its expression became allele specific in tumors. The most salient finding, however, came from small RNA sequencing of the tumor samples, which revealed that a cluster of ∼53 microRNAs and mRNAs at the Dlk1-Dio3 locus on mouse chromosome 12qF1 was markedly and consistently increased in tumors. Activation of this locus occurred specifically in sorted tumor-originating cancer cells. Interestingly, the 12qF1 RNAs were repressed in cultured Kras(G12D) tumor cells but reactivated when transplanted in vivo. These microRNAs have been implicated in stem cell pleuripotency and proteins targeted by these microRNAs are involved in key pathways in cancer as well as embryogenesis. Taken together, our results strongly imply that these microRNAs represent key targets in unraveling the mechanism of lung oncogenesis
Evaluation of renal perfusion in hyperthyroid cats before and after radioiodine treatment
Background: Hyperthyroidism and chronic kidney disease (CKD) are common in elderly cats. Consequently, both diseases often occur concurrently. Furthermore, renal function is affected by thyroid status. Because changes in renal perfusion play an important role in functional renal changes in hyperthyroid cats, investigation of renal perfusion may provide novel insights.
Objectives: To evaluate renal perfusion in hyperthyroid cats with contrast-enhanced ultrasound (CEUS).
Animals: A total of 42 hyperthyroid cats was included and evaluated before and 1 month after radioiodine treatment.
Methods: Prospective intrasubject clinical trial of contrast-enhanced ultrasound using a commercial contrast agent (SonoVue) to evaluate renal perfusion. Time-intensity curves were created, and perfusion parameters were calculated by off-line software. A linear mixed model was used to examine differences between pre-and post-treatment perfusion parameters.
Results: An increase in several time-related perfusion parameters was observed after radioiodine treatment, indicating a decreased blood velocity upon resolution of the hyperthyroid state. Furthermore, a small post-treatment decrease in peak enhancement was present in the renal medulla, suggesting a lower medullary blood volume.
Conclusions and Clinical Importance: Contrast-enhanced ultrasound indicated a higher cortical and medullary blood velocity and higher medullary blood volume in hyperthyroid cats before radioactive treatment in comparison with 1-month post-treatment control
Clergy work-related satisfactions in parochial ministry: the influence of personality and churchmanship
The aim of this study was to test several hypotheses that clergy work-related satisfaction could be better explained by a multidimensional rather than a unidimensional model. A sample of 1071 male stipendiary parochial clergy in the Church of England completed the Clergy Role Inventory, together with the short-form Revised Eysenck Personality Questionnaire. Factor analysis of the Clergy Role Inventory identified five separate clergy roles: Religious Instruction, Administration, Statutory Duties (conducting marriages and funerals), Pastoral Care, and Role Extension (including extra-parochial activities). Respondents also provided an indication of their predispositions on the catholic-evangelical and liberal-conservative dimensions. The significant associations of the satisfactions derived from each of the roles with the demographic, personality, and churchmanship variables were numerous, varied, and, with few exceptions, small in magnitude. Separate hierarchical regressions for each of the five roles indicated that the proportion of total variance explained by churchmanship was, in general, at least as great as that explained by personality, and was greater for three roles: Religious Instruction, Statutory Duties, and Role Extension. It was concluded that clergy satisfactions derived from different roles are not uniform and that churchmanship is at least as important as personality in accounting for clergy work satisfaction
The influence of perfusion solution on renal graft viability assessment
BACKGROUND: Kidneys from donors after cardiac or circulatory death are exposed to extended periods of both warm ischemia and intra-arterial cooling before organ recovery. Marshall’s hypertonic citrate (HOC) and Bretschneider’s histidine-tryptophan-ketoglutarate (HTK) preservation solutions are cheap, low viscosity preservation solutions used clinically for organ flushing. The aim of the present study was to evaluate the effects of these two solutions both on parameters used in clinical practice to assess organ viability prior to transplantation and histological evidence of ischemic injury after reperfusion. METHODS: Rodent kidneys were exposed to post-mortem warm ischemia, extended intra-arterial cooling (IAC) (up to 2 h) with preservation solution and reperfusion with either Krebs-Hensleit or whole blood in a transplant model. Control kidneys were either reperfused directly after retrieval or stored in 0.9% saline. Biochemical, immunological and histological parameters were assessed using glutathione-S-transferase (GST) enzymatic assays, polymerase chain reaction and mitochondrial electron microscopy respectively. Vascular function was assessed by supplementing the Krebs-Hensleit perfusion solution with phenylephrine to stimulate smooth muscle contraction followed by acetylcholine to trigger endothelial dependent relaxation. RESULTS: When compared with kidneys reperfused directly post mortem, 2 h of IAC significantly reduced smooth muscle contractile function, endothelial function and upregulated vascular cellular adhesion molecule type 1 (VCAM-1) independent of the preservation solution. However, GST release, vascular resistance, weight gain and histological mitochondrial injury were dependent on the preservation solution used. CONCLUSIONS: We conclude that initial machine perfusion viability tests, including ischemic vascular resistance and GST, are dependent on the perfusion solution used during in situ cooling. HTK-perfused kidneys will be heavier, have higher GST readings and yet reduced mitochondrial ischemic injury when compared with HOC-perfused kidneys. Clinicians should be aware of this when deciding which kidneys to transplant or discard
Super-rough phase of the random-phase sine-Gordon model: Two-loop results
We consider the two-dimensional random-phase sine-Gordon and study the
vicinity of its glass transition temperature , in an expansion in small
, where denotes the temperature. We derive
renormalization group equations in cubic order in the anharmonicity, and show
that they contain two universal invariants. Using them we obtain that the
correlation function in the super-rough phase for temperature behaves
at large distances as , where the amplitude
is a universal function of temperature
. This result differs at
two-loop order, i.e., , from the prediction based on
results from the "nearly conformal" field theory of a related fermion model. We
also obtain the correction-to-scaling exponent.Comment: 34 page
Peptidyl-prolyl cis-trans isomerases (immunophilins) and their roles in parasite biochemistry, host-parasite interaction and antiparasitic drug action.
Immunophilin is the collective name given to the cyclophilin and FK506-binding protein (FKBP) families. As the name suggests, these include the major binding proteins of certain immunosuppressive drugs: cyclophilins for the cyclic peptide cyclosporin A and FKBPs for the macrolactones FK506 and rapamycin. Both families, although dissimilar in sequence, possess peptidyl-prolyl <i>cis-trans</i> isomerase activity in vitro and can play roles in protein folding and transport, RNA splicing and the regulation of multiprotein complexes in cells. In addition to enzymic activity, many immunophilins act as molecular chaperones. This property may be conferred by the isomerase domain and/or by additional domains. Recent years have seen a great increase in the number of known immunophilin genes in parasitic protozoa and helminths and in many cases their products have been characterized biochemically and their temporal and spatial expression patterns have been examined. Some of these genes represent novel types: one
example is a <i>Toxoplasma gondii</i> gene encoding a protein with both cyclophilin and FKBP domains. Likely roles in protein folding and oligomerisation, RNA splicing and sexual differentiation have been suggested for parasite immunophilins. In addition, unexpected roles in parasite virulence (Mip FKBP of <i>Trypanosoma cruzi</i>) and host immuno-modulation (e.g. 18-kDa cyclophilin of <i>Toxoplasma gondii</i>) have been established. Furthermore, in view of the potent antiparasitic activities of cyclosporins, macrolactones and nonimmunosuppressive derivatives of these compounds, immunophilins may mediate drug action and/or may themselves represent potential drug targets. Investigation of the mechanisms of action of these agents may lead to the design of potent and selective antimalarial and other antiparasitic drugs. This review discusses the properties of immunophilins in parasites and the 'animal model' <i>Caenorhabditis elegans</i> and relates these to our understanding of the roles of these proteins in cellular biochemistry, host-parasite interaction and the antiparasitic mechanisms of the drugs that bind to them
Detecting Sunyaev-Zel'dovich clusters with PLANCK: I. Construction of all-sky thermal and kinetic SZ-maps
All-sky thermal and kinetic Sunyaev-Zel'dovich (SZ) maps are presented for
assessing how well the PLANCK-mission can find and characterise clusters of
galaxies, especially in the presence of primary anisotropies of the cosmic
microwave background (CMB) and various galactic and ecliptic foregrounds. The
maps have been constructed from numerical simulations of structure formation in
a standard LCDM cosmology and contain all clusters out to redshifts of z = 1.46
with masses exceeding 5e13 M_solar/h. By construction, the maps properly
account for the evolution of cosmic structure, the halo-halo correlation
function, the evolving mass function, halo substructure and adiabatic gas
physics. The velocities in the kinetic map correspond to the actual density
environment at the cluster positions. We characterise the SZ-cluster sample by
measuring the distribution of angular sizes, the integrated thermal and kinetic
Comptonisations, the source counts in the three relevant PLANCK-channels, and
give the angular power-spectra of the SZ-sky. While our results are broadly
consistent with simple estimates based on scaling relations and spherically
symmetric cluster models, some significant differences are seen which may
affect the number of cluster detectable by PLANCK.Comment: 14 pages, 16 figures, 3 tables, submitted to MNRAS, 05.Jul.200
Generalizing the O(N)-field theory to N-colored manifolds of arbitrary internal dimension D
We introduce a geometric generalization of the O(N)-field theory that
describes N-colored membranes with arbitrary dimension D. As the O(N)-model
reduces in the limit N->0 to self-avoiding polymers, the N-colored manifold
model leads to self-avoiding tethered membranes. In the other limit, for inner
dimension D->1, the manifold model reduces to the O(N)-field theory. We analyze
the scaling properties of the model at criticality by a one-loop perturbative
renormalization group analysis around an upper critical line. The freedom to
optimize with respect to the expansion point on this line allows us to obtain
the exponent \nu of standard field theory to much better precision that the
usual 1-loop calculations. Some other field theoretical techniques, such as the
large N limit and Hartree approximation, can also be applied to this model. By
comparison of low and high temperature expansions, we arrive at a conjecture
for the nature of droplets dominating the 3d-Ising model at criticality, which
is satisfied by our numerical results. We can also construct an appropriate
generalization that describes cubic anisotropy, by adding an interaction
between manifolds of the same color. The two parameter space includes a variety
of new phases and fixed points, some with Ising criticality, enabling us to
extract a remarkably precise value of 0.6315 for the exponent \nu in d=3. A
particular limit of the model with cubic anisotropy corresponds to the random
bond Ising problem; unlike the field theory formulation, we find a fixed point
describing this system at 1-loop order.Comment: 57 pages latex, 26 figures included in the tex
Mass spectrometry of B. subtilis CopZ: Cu(I)-binding and interactions with bacillithiol
CopZ from Bacillus subtilis is a well-studied member of the highly conserved family of Atx1-like copper chaperones. It was previously shown via solution and crystallographic studies to undergo Cu(I)-mediated dimerisation, where the CopZ dimer can bind between one and four Cu(I) ions. However, these studies could not provide information about the changing distribution of species at increasing Cu(I) levels. To address this, electrospray ionisation mass spectrometry using soft ionisation was applied to CopZ under native conditions. Data revealed folded, monomeric CopZ in apo- and Cu(I)-bound forms, along with Cu(I)-bound dimeric forms of CopZ at higher Cu(I) loading. Cu4(CopZ)2 was the major dimeric species at loadings >1 Cu(I)/CopZ, indicating the cooperative formation of the tetranuclear Cu(I)-bound species. As the principal low molecular weight thiol in B. subtilis, bacillithiol (BSH) may play a role in copper homeostasis. Mass spectrometry showed that increasing BSH led to a reduction in Cu(I)-bound dimeric forms, and the formation of S-bacillithiolated apo-CopZ and BSH adducts of Cu(I)-bound forms of CopZ, where BSH likely acts as a Cu(I) ligand. These data, along with the high affinity of BSH for Cu(I), determined here to be β2(BSH) = ∼4 × 1017 M−2, are consistent with a role for BSH alongside CopZ in buffering cellular Cu(I) levels. Here, mass spectrometry provides a high resolution overview of CopZ–Cu(I) speciation that cannot be obtained from less discriminating solution-phase methods, thus illustrating the potential for the wider application of this technique to studies of metal–protein interactions
- …
