20 research outputs found

    The Use of Laser Microirradiation to Investigate the Roles of Cohesins in DNA Repair.

    No full text
    In addition to their mitotic and transcriptional functions, cohesin plays critical roles in DNA damage response (DDR) and repair. Specifically, cohesin promotes homologous recombination (HR) repair of DNA double-strand breaks (DSBs), which is conserved from yeast to humans, and is a critical effector of ATM/ATR DDR kinase-mediated checkpoint control in mammalian cells. Optical laser microirradiation has been instrumental in revealing the damage site-specific functions of cohesin and, more recently, uncovering the unique role of cohesin-SA2, one of the two cohesin complexes uniquely present in higher eukaryotes, in DNA repair in human cells. In this review, we briefly describe what we know about cohesin function and regulation in response to DNA damage, and discuss the optimized laser microirradiation conditions used to analyze cohesin responses to DNA damage in vivo

    Biallelic Mutations in Snx14 Cause A Syndromic Form of Cerebellar Atrophy and Lysosome-Autophagosome Dysfunction

    Get PDF
    Pediatric-onset ataxias often present clinically with developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a novel clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in sorting nexin 14 (SNX14), encoding a ubiquitously expressed modular PX-domain-containing sorting factor. We found SNX14 localized to lysosomes, and associated with phosphatidyl-inositol (3,5)P2, a key component of late endosomes/lysosomes. Patient cells showed engorged lysosomes and slower autophagosome clearance rate upon starvation induction. Zebrafish morphants showed dramatic loss of cerebellar parenchyma, accumulated autophagosomes, and activation of apoptosis. Our results suggest a unique ataxia syndrome due to biallelic SNX14 mutations, leading to lysosome-autophagosome dysfunction.PubMedWo
    corecore