94 research outputs found

    Sleep quality in middle-aged and elderly Chinese: distribution, associated factors and associations with cardio-metabolic risk factors

    Get PDF
    Background Poor sleep quality has been associated with increased risk of heart disease, diabetes and mortality. However, limited information exists on the distribution and determinants of sleep quality and its associations with cardio-metabolic risk factors in Chinese populations. We aimed to evaluate this in the current study. Methods A cross-sectional survey conducted in 2005 of 1,458 men and 1,831 women aged 50–70 years from urban and rural areas of Beijing and Shanghai. Using a questionnaire, sleep quality was measured in levels of well, common and poor. Comprehensive measures of socio-demographical and health factors and biomarkers of cardio-metabolic disease were recorded. These were evaluated in association with sleep quality using logistic regression models. Results Half of the population reported good sleep quality. After adjusting for potential confounders, women and Beijing residents had almost half the probability to report good sleep quality. Good physical and mental health (good levels of self-rated health (OR 2.48; 95%CI 2.08 to 2.96) and no depression (OR 4.05; 95%CI 3.12 to 5.26)) related to an increased chance of reporting good sleep quality, whereas short sleep duration (<7 hrs OR 0.10; 95%CI 0.07 to 0.14)) decreased it substantially. There were significant associations between levels of sleep quality and concentrations of plasma insulin, total and LDL cholesterol, and index of insulin resistance. Conclusion Levels of good sleep quality in middle-age and elderly Chinese were low. Gender, geographical location, self-rated health, depression and sleep quantity were major factors associated with sleep quality. Prospective studies are required to distil the factors that determine sleep quality and the effects that sleep patterns exert on cardio-metabolic health

    Armodafinil improves wakefulness and long-term episodic memory in nCPAP-adherent patients with excessive sleepiness associated with obstructive sleep apnea

    Get PDF
    Residual excessive sleepiness (ES) and impaired cognition can occur despite effective and regular nasal continuous positive airway pressure (nCPAP) therapy in some patients with obstructive sleep apnea (OSA). A pooled analysis of two 12-week, randomized, double-blind studies in nCPAP-adherent patients with ES associated with OSA evaluated the effect of armodafinil on wakefulness and cognition. Three hundred and ninety-one patients received armodafinil (150 or 250 mg) and 260 patients received placebo once daily for 12 weeks. Efficacy assessments included the Maintenance of Wakefulness Test (MWT), Cognitive Drug Research cognitive performance battery, Epworth Sleepiness Scale, and Brief Fatigue Inventory. Adverse events were monitored. Armodafinil increased mean MWT sleep latency from baseline to final visit by 2.0 min vs a decrease of 1.5 min with placebo (P < 0.0001). Compared with placebo, armodafinil significantly improved quality of episodic secondary memory (P < 0.05) and patients’ ability to engage in activities of daily living (P < 0.0001) and reduced fatigue (P < 0.01). The most common adverse events were headache, nausea, and insomnia. Armodafinil did not adversely affect desired nighttime sleep, and nCPAP use remained high (approximately 7 h/night). Adjunct treatment with armodafinil significantly improved wakefulness, long-term memory, and patients’ ability to engage in activities of daily living in nCPAP-adherent individuals with ES associated with OSA. Armodafinil also reduced patient-reported fatigue and was well tolerated

    A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages

    Get PDF
    To assess possible differences between the mineral phases of cortical and cancellous bone, the structure and composition of isolated bovine mineral crystals from young (1–3 months) and old (4–5 years) postnatal bovine animals were analyzed by a variety of complementary techniques: chemical analyses, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and 31P solid-state magic angle spinning nuclear magnetic resonance spectroscopy (NMR). This combination of methods represents the most complete physicochemical characterization of cancellous and cortical bone mineral completed thus far. Spectra obtained from XRD, FTIR, and 31P NMR all confirmed that the mineral was calcium phosphate in the form of carbonated apatite; however, a crystal maturation process was evident between the young and old and between cancellous and cortical mineral crystals. Two-way analyses of variance showed larger increases of crystal size and Ca/P ratio for the cortical vs. cancellous bone of 1–3 month than the 4–5 year animals. The Ca/(P + CO3) remained nearly constant within a given bone type and in both bone types at 4–5 years. The carbonate and phosphate FTIR band ratios revealed a decrease of labile ions with age and in cortical, relative to cancellous, bone. Overall, the same aging or maturation trends were observed for young vs. old and cancellous vs. cortical. Based on the larger proportion of newly formed bone in cancellous bone relative to cortical bone, the major differences between the cancellous and cortical mineral crystals must be ascribed to differences in average age of the crystals

    Fluid flow in the osteocyte mechanical environment : a fluid-structure interaction approach

    Get PDF
    Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid–structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity (3,000με compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities (∼60.5μ m/s ) and average maximum shear stresses (∼11 Pa ) surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology

    Human Neural Stem Cells Over-Expressing VEGF Provide Neuroprotection, Angiogenesis and Functional Recovery in Mouse Stroke Model

    Get PDF
    BACKGROUND: Intracerebral hemorrhage (ICH) is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs) selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF) results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2–3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke

    Elite Suppressors Harbor Low Levels of Integrated HIV DNA and High Levels of 2-LTR Circular HIV DNA Compared to HIV+ Patients On and Off HAART

    Get PDF
    Elite suppressors (ES) are a rare population of HIV-infected individuals that are capable of naturally controlling the infection without the use of highly active anti-retroviral therapy (HAART). Patients on HAART often achieve viral control to similar (undetectable) levels. Accurate and sensitive methods to measure viral burden are needed to elucidate important differences between these two patient populations in order to better understand their mechanisms of control. Viral burden quantification in ES patients has been limited to measurements of total DNA in PBMC, and estimates of Infectious Units per Million cells (IUPM). There appears to be no significant difference in the level of total HIV DNA between cells from ES patients and patients on HAART. However, recovering infectious virus from ES patient samples is much more difficult, suggesting their reservoir size should be much smaller than that in patients on HAART. Here we find that there is a significant difference in the level of integrated HIV DNA in ES patients compared to patients on HAART, providing an explanation for the previous results. When comparing the level of total to integrated HIV DNA in these samples we find ES patients have large excesses of unintegrated HIV DNA. To determine the composition of unintegrated HIV DNA in these samples, we measured circular 2-LTR HIV DNA forms and found ES patients frequently have high levels of 2-LTR circles in PBMC. We further show that these high levels of 2-LTR circles are not the result of inefficient integration in ES cells, since HIV integrates with similar efficiency in ES and normal donor cells. Our findings suggest that measuring integration provides a better surrogate of viral burden than total HIV DNA in ES patients. Moreover, they add significantly to our understanding of the mechanisms that allow viral control and reservoir maintenance in this unique patient population

    Alteration of AKT Activity Increases Chemotherapeutic Drug and Hormonal Resistance in Breast Cancer yet Confers an Achilles Heel by Sensitization to Targeted Therapy

    Get PDF
    The PI3K/PTEN/Akt/mTOR pathway plays critical roles in the regulation of cell growth. The effects of this pathway on drug resistance and cellular senescence of breast cancer cells has been a focus of our laboratory. Introduction of activated Akt or mutant PTEN constructs which lack lipid phosphatase [PTEN(G129E)] or lipid and protein phosphatase [PTEN(C124S)] activity increased the resistance of the cells to the chemotherapeutic drug doxorubicin, and the hormonal drug tamoxifen. Activated Akt and PTEN genes also inhibited the induction of senescence after doxorubicin treatment; a phenomenon associated with unrestrained proliferation and tumorigenesis. Interference with the lipid phosphatase domain of PTEN was sufficient to activate Akt/mTOR/p70S6K as MCF-7 cells transfected with the mutant PTEN gene lacking the lipid phosphatase activity [PTEN(G129E)] displayed elevated levels of activated Akt and p70S6K compared to empty vector transfected cells. Cells transfected with mutant PTEN or Akt constructs were hypersensitive to mTOR inhibitors when compared with the parental or empty vector transfected cells. Akt-transfected cells were cultured for over two months in tamoxifen from which tamoxifen and doxorubicin resistant cells were isolated that were >10-fold more resistant to tamoxifen and doxorubicin than the original Akt-transfected cells. These cells had a decreased induction of both activated p53 and total p21Cip1 upon doxorubicin treatment. Furthermore, these cells had an increased inactivation of GSK-3β and decreased expression of the estrogen receptor-α. In these drug resistant cells, there was an increased activation of ERK which is associated with proliferation. These drug resistant cells were hypersensitive to mTOR inhibitors and also sensitive to MEK inhibitors, indicating that the enhanced p70S6K and ERK expression was relevant to their drug and hormonal resistance. Given that Akt is overexpressed in greater than 50% of breast cancers, our results point to potential therapeutic targets, mTOR and MEK. These studies indicate that activation of the Akt kinase or disruption of the normal activity of the PTEN phosphatase can have dramatic effects on activity of p70S6K and other downstream substrates and thereby altering the therapeutic sensitivity of breast cancer cells. The effects of doxorubicin and tamoxifen on induction of the Raf/MEK/ERK and PI3K/Akt survival pathways were examined in unmodified MCF-7 breast cells. Doxorubicin was a potent inducer of activated ERK and to a lesser extent Akt. Tamoxifen also induced ERK. Thus a consequence of doxorubicin and tamoxifen therapy of breast cancer is the induction of a pro-survival pathway which may contribute to the development of drug resistance. Unmodified MCF-7 cells were also sensitive to MEK and mTOR inhibitors which synergized with both tamoxifen and doxorubicin to induce death. In summary, our results point to the key interactions between the PI3K/PTEN/Akt/mTOR and Raf/ MEK/ERK pathways in regulating chemotherapeutic drug resistance/sensitivity in breast cancer and indicate that targeting these pathways may prevent drug and hormonal resistance. Orignally published Advances in Enzyme Regulation, Vol. 48, No. 1, 2008
    corecore