77 research outputs found

    Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy

    Get PDF
    It is unknown if adult human skeletal muscle has an epigenetic memory of earlier encounters with growth. We report, for the first time in humans, genome-wide DNA methylation (850,000 CpGs) and gene expression analysis after muscle hypertrophy (loading), return of muscle mass to baseline (unloading), followed by later hypertrophy (reloading). We discovered increased frequency of hypomethylation across the genome after reloading (18,816 CpGs) versus earlier loading (9,153 CpG sites). We also identified AXIN1, GRIK2, CAMK4, TRAF1 as hypomethylated genes with enhanced expression after loading that maintained their hypomethylated status even during unloading where muscle mass returned to control levels, indicating a memory of these genes methylation signatures following earlier hypertrophy. Further, UBR5, RPL35a, HEG1, PLA2G16, SETD3 displayed hypomethylation and enhanced gene expression following loading, and demonstrated the largest increases in hypomethylation, gene expression and muscle mass after later reloading, indicating an epigenetic memory in these genes. Finally, genes; GRIK2, TRAF1, BICC1, STAG1 were epigenetically sensitive to acute exercise demonstrating hypomethylation after a single bout of resistance exercise that was maintained 22 weeks later with the largest increase in gene expression and muscle mass after reloading. Overall, we identify an important epigenetic role for a number of largely unstudied genes in muscle hypertrophy/memory

    The Human Skeletal Muscle Proteome Project:a reappraisal of the current literature

    Get PDF
    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of 'sarcopenia', a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer-reviewed studies was performed using PubMed. Search terms included 'human', 'skeletal muscle', 'proteome', 'proteomic(s)', and 'mass spectrometry', 'liquid chromatography-mass spectrometry (LC-MS/MS)'. A catalogue of 5431 non-redundant muscle proteins identified by mass spectrometry-based proteomics from 38 peer-reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry-based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment

    The HELLP syndrome: Clinical issues and management. A Review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HELLP syndrome is a serious complication in pregnancy characterized by haemolysis, elevated liver enzymes and low platelet count occurring in 0.5 to 0.9% of all pregnancies and in 10–20% of cases with severe preeclampsia. The present review highlights occurrence, diagnosis, complications, surveillance, corticosteroid treatment, mode of delivery and risk of recurrence.</p> <p>Methods</p> <p>Clinical reports and reviews published between 2000 and 2008 were screened using Pub Med and Cochrane databases.</p> <p>Results and conclusion</p> <p>About 70% of the cases develop before delivery, the majority between the 27th and 37th gestational weeks; the remainder within 48 hours after delivery. The HELLP syndrome may be complete or incomplete. In the Tennessee Classification System diagnostic criteria for HELLP are haemolysis with increased LDH (> 600 U/L), AST (≥ 70 U/L), and platelets < 100·10<sup>9</sup>/L. The Mississippi Triple-class HELLP System further classifies the disorder by the nadir platelet counts. The syndrome is a progressive condition and serious complications are frequent. Conservative treatment (≥ 48 hours) is controversial but may be considered in selected cases < 34 weeks' gestation. Delivery is indicated if the HELLP syndrome occurs after the 34th gestational week or the foetal and/or maternal conditions deteriorate. Vaginal delivery is preferable. If the cervix is unfavourable, it is reasonable to induce cervical ripening and then labour. In gestational ages between 24 and 34 weeks most authors prefer a single course of corticosteroid therapy for foetal lung maturation, either 2 doses of 12 mg betamethasone 24 hours apart or 6 mg or dexamethasone 12 hours apart before delivery. Standard corticosteroid treatment is, however, of uncertain clinical value in the maternal HELLP syndrome. High-dose treatment and repeated doses should be avoided for fear of long-term adverse effects on the foetal brain. Before 34 weeks' gestation, delivery should be performed if the maternal condition worsens or signs of intrauterine foetal distress occur. Blood pressure should be kept below 155/105 mmHg. Close surveillance of the mother should be continued for at least 48 hours after delivery.</p

    Plasticity of the Muscle Stem Cell Microenvironment

    Get PDF
    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes

    Omega-3 fatty acid EPA improves regenerative capacity of mouse skeletal muscle cells exposed to saturated fat and inflammation

    Get PDF
    © 2016 The Author(s) Sarcopenic obesity is characterised by high fat mass, low muscle mass and an elevated inflammatory environmental milieu. We therefore investigated the effects of elevated inflammatory cytokine TNF-α (aging/obesity) and saturated fatty acid, palmitate (obesity) on skeletal muscle cells in the presence/absence of EPA, a-3 polyunsaturated fatty acid with proposed anti-inflammatory, anti-obesity activities. In the present study we show that palmitate was lipotoxic, inducing high levels of cell death and blocking myotube formation. Cell death under these conditions was associated with increased caspase activity, suppression of differentiation, reductions in both creatine kinase activity and gene expression of myogenic factors; IGF-II, IGFBP-5, MyoD and myogenin. However, inhibition of caspase activity via administration of Z-VDVAD-FMK (caspase-2), Z-DEVD-FMK (caspase-3) and ZIETD-KMK (caspase 8) was without effect on cell death. By contrast, lipotoxicity associated with elevated palmitate was reduced with the MEK inhibitor PD98059, indicating palmitate induced cell death was MAPK mediated. These lipotoxic conditions were further exacerbated in the presence of inflammation via TNF-α co-administration. Addition of EPA under cytotoxic stress (TNF-α) was shown to partially rescue differentiation with enhanced myotube formation being associated with increased MyoD, myogenin, IGF-II and IGFBP-5 expression. EPA had little impact on the cell death phenotype observed in lipotoxic conditions but did show benefit in restoring differentiation under lipotoxic plus cytotoxic conditions. Under these conditions Id3 (inhibitor of differentiation) gene expression was inversely linked with survival rates, potentially indicating a novel role of EPA and Id3 in the regulation of apoptosis in lipotoxic/cytotoxic conditions. Additionally, signalling studies indicated the combination of lipo- and cyto-toxic effects on the muscle cells acted through ceramide, JNK and MAPK pathways and blocking these pathways using PD98059 (MEK inhibitor) and Fumonisin B1 (ceramide inhibitor) significantly reduced levels of cell death. These findings highlight novel pathways associated with in vitro models of lipotoxicity (palmitate-mediated) and cytotoxicity (inflammatory cytokine mediated) in the potential targeting of molecular modulators of sarcopenic obesity
    • …
    corecore