2,766 research outputs found

    Following the rivers: historical reconstruction of California voles Microtus californicus (Rodentia: Cricetidae) in the deserts of eastern California

    Get PDF
    The California vole, Microtus californicus, restricted to habitat patches where water is available nearly year-round, is a remnant of the mesic history of the southern Great Basin and Mojave deserts of eastern California. The history of voles in this region is a model for species-edge population dynamics through periods of climatic change. We sampled voles from the eastern deserts of California and examined variation in the mitochondrial cytb gene, three nuclear intron regions, and across 12 nuclear microsatellite markers. Samples are allocated to two mitochondrial clades: one associated with southern California and the other with central and northern California. The limited mtDNA structure largely recovers the geographical distribution, replicated by both nuclear introns and microsatellites. The most remote population, Microtus californicus scirpensis at Tecopa near Death Valley, was the most distinct. This population shares microsatellite alleles with both mtDNA clades, and both its northern clade nuclear introns and southern clade mtDNA sequences support a hybrid origin for this endangered population. The overall patterns support two major invasions into the desert through an ancient system of riparian corridors along streams and lake margins during the latter part of the Pleistocene followed by local in situ divergence subsequent to late Pleistocene and Holocene drying events. Changes in current water resource use could easily remove California voles from parts of the desert landscape

    Galaxy clustering in the NEWFIRM Medium Band Survey: the relationship between stellar mass and dark matter halo mass at 1 < z < 2

    Get PDF
    We present an analysis of the clustering of galaxies as a function of their stellar mass at 1 < z < 2 using data from the NEWFIRM Medium Band Survey (NMBS). The precise photometric redshifts and stellar masses that the NMBS produces allows us to define a series of mass limited samples of galaxies more massive than 0.7, 1 and 3x10^10 Msun in redshift intervals centered on z = 1.1, 1.5 and 1.9 respectively. In each redshift interval we show that there exists a strong dependence of clustering strength on the stellar mass limit of the sample, with more massive galaxies showing a higher clustering amplitude on all scales. We further interpret our clustering measurements in the LCDM cosmological context using the halo model of galaxy clustering. We show that the typical halo mass of central and satellite galaxies increases with stellar mass, whereas the satellite fraction decreases with stellar mass, qualitatively the same as is seen at z < 1. We see little evidence of any redshift dependence in the stellar mass-to-halo mass relationship over our narrow redshift range. However, when we compare with similar measurements at z~0, we see clear evidence for a change in this relation. If we assume a universal baryon fraction, the ratio of stellar mass to halo mass reveals the fraction of baryons that have been converted to stars. We see that the peak in this star formation efficiency for central galaxies shifts to higher halo masses at higher redshift, moving from ~7x10^11 Msun at z~0 to ~3x10^12 Msun at z~1.5, revealing evidence of `halo downsizing'. Finally we show that for highly biased galaxy populations at z > 1 there may be a discrepancy between the measured space density and clustering and that predicted by the halo model. This could imply that there is a problem with one or more ingredients of the halo model at these redshifts, for instance the halo bias relation or the halo profile.Comment: Accepted for publication in ApJ. Correction made to typo in halo masses in conclusion

    Bulk Majorons at Colliders

    Get PDF
    Lepton number violation may arise via the spontaneous breakdown of a global symmetry. In extra dimensions, spontaneous lepton number violation in the bulk implies the existence of a Goldstone boson, the majoron J^(0), as well as an accompanying tower of Kaluza-Klein (KK) excitations, J^(n). Even if the zero-mode majoron is very weakly interacting, so that detection in low-energy processes is difficult, the sum over the tower of KK modes may partially compensate in processes of relevance at high-energy colliders. Here we consider the inclusive differential and total cross sections for e^- e^- --> W^- W^- J, where J represents a sum over KK modes. We show that allowed parameter choices exist for which this process may be accessible to a TeV-scale electron collider.Comment: 11 pages LaTeX, 3 eps figures (references added

    Constraining halo occupation properties of X-ray AGNs using clustering of Chandra sources in the Bootes survey region

    Full text link
    We present one of the most precise measurement to date of the spatial clustering of X-ray selected AGNs using a sample derived from the Chandra X-ray Observatory survey in the Bootes field. The real-space two-point correlation function over a redshift interval from z=0.17 to z~3 is well described by the power law, xi(r)=(r/r0)^-gamma, for comoving separations r<~20h^-1 Mpc. We find gamma=1.84+-0.12 and r0 consistent with no redshift trend within the sample (varying between r0=5.5+-0.6 h^-1 Mpc for =0.37 and r0=6.9+-1.0 h^-1 Mpc for =1.28). Further, we are able to measure the projections of the two-point correlation function both on the sky plane and in the line of sight. We use these measurements to show that the Chandra/Bootes AGNs are predominantly located at the centers of dark matter halos with the circular velocity Vmax>320 km/s or M_200 > 4.1e12 h^-1 Msun, and tend to avoid satellite galaxies in halos of this or higher mass. The halo occupation properties inferred from the clustering properties of Chandra/Bootes AGNs --- the mass scale of the parent dark matter halos, the lack of significant redshift evolution of the clustering length, and the low satellite fraction --- are broadly consistent with the Hopkins et al. scenario of quasar activity triggered by mergers of similarly-sized galaxies.Comment: Accepted to ApJ. The revision matches the accepted version. The most significant changes include the recalculation of uncertainties using mock catalogs and explicit comparison with the AGN HOD studies based on projected correlation function, w(rp

    Whole-tree chambers for elevated atmospheric CO<inf>2</inf> experimentation and tree scale flux measurements in south-eastern Australia: The Hawkesbury Forest Experiment

    Full text link
    Resolving ecophysiological processes in elevated atmospheric CO2 (Ca) at scales larger than single leaves poses significant challenges. Here, we describe a field-based experimental system designed to grow trees up to 9m tall in elevated Ca with the capacity to control air temperature and simultaneously measure whole-tree gas exchange. In western Sydney, Australia, we established the Hawkesbury Forest Experiment (HFE) where we built whole-tree chambers (WTC) to measure whole-tree CO2 and water fluxes of an evergreen broadleaf tree, Eucalyptus saligna. A single E. saligna tree was grown from seedling to small tree within each of 12 WTCs; six WTCs were maintained at ambient Ca and six WTCs were maintained at elevated Ca, targeted at ambient Ca +240μmolmol-1. All 12 WTCs were controlled to track ambient outside air temperature (Tair) and air water vapour deficit (Dair). During the experimental period, Tair, Dair and Ca in the WTCs were within 0.5°C, 0.3kPa, and 15μmolmol-1 of the set-points for 90% of the time, respectively. Diurnal responses of whole-tree CO2 and water vapour fluxes are analysed, demonstrating the ability of the tree chamber system to measure rapid environmental responses of these fluxes of entire trees. The light response of CO2 uptake for entire trees showed a clear diurnal hysteresis, attributed to stomatal closure at high Dair. Tree scale CO2 fluxes confirm the hypothesised deleterious effect of chilling night-time temperatures on whole-tree carbon gain in this subtropical Eucalyptus. The whole-tree chamber flux data add an invaluable scale to measurements in both ambient and elevated Ca and allow us to elucidate the mechanisms driving tree productivity responses to elevated Ca in interaction with water availability and temperature. © 2010 Elsevier B.V

    Relationship between Tibial conformation, cage size and advancement achieved in TTA procedure

    Get PDF
    Previous studies have suggested that there is a theoretical discrepancy between the cage size and the resultant tibial tuberosity advancement, with the cage size consistently providing less tibial tuberosity advancement than predicted. The purpose of this study was to test and quantify this in clinical cases. The hypothesis was that the advancement of the tibial tuberosity as measured by the widening of the proximal tibia at the tibial tuberosity level after a standard TTA, will be less than the cage sized used, with no particular cage size providing a relative smaller or higher under-advancement, and that the conformation of the proximal tibia will have an influence on the amount of advancement achieved

    Satellite abundances around bright isolated galaxies

    Full text link
    We study satellite galaxy abundances in SDSS by counting photometric galaxies around isolated bright primaries. We present results as a function of the luminosity, stellar mass and colour of the satellites, and of the stellar mass and colour of the primaries. For massive primaries the luminosity and stellar mass functions of satellites are similar in shape to those of field galaxies, but for lower mass primaries they are significantly steeper. The steepening is particularly marked for the stellar mass function. Satellite abundance increases strongly with primary stellar mass, approximately in proportion to expected dark halo mass. Massive red primaries have up to a factor of 2 more satellites than blue ones of the same stellar mass. Satellite galaxies are systematically redder than field galaxies of the same stellar mass. Satellites are also systematically redder around more massive primaries. At fixed primary mass, they are redder around red primaries. We select similarly isolated galaxies from mock catalogues based on the simulations of Guo et al.(2011) and analyze them in parallel with the SDSS data. The simulation reproduces all the above trends qualitatively, except for the steepening of the satellite luminosity and stellar mass functions. Model satellites, however, are systematically redder than in the SDSS, particularly at low mass and around low-mass primaries. Simulated haloes of a given mass have satellite abundances that are independent of central galaxy colour, but red centrals tend to have lower stellar masses, reflecting earlier quenching of their star formation by feedback. This explains the correlation between satellite abundance and primary colour in the simulation. The correlation between satellite colour and primary colour arises because red centrals live in haloes which are more massive, older and more gas-rich, so that satellite quenching is more efficient.Comment: 29 pages, 24 figure

    A Substantial Population of Low Mass Stars in Luminous Elliptical Galaxies

    Full text link
    The stellar initial mass function (IMF) describes the mass distribution of stars at the time of their formation and is of fundamental importance for many areas of astrophysics. The IMF is reasonably well constrained in the disk of the Milky Way but we have very little direct information on the form of the IMF in other galaxies and at earlier cosmic epochs. Here we investigate the stellar mass function in elliptical galaxies by measuring the strength of the Na I doublet and the Wing-Ford molecular FeH band in their spectra. These lines are strong in stars with masses <0.3 Msun and weak or absent in all other types of stars. We unambiguously detect both signatures, consistent with previous studies that were based on data of lower signal-to-noise ratio. The direct detection of the light of low mass stars implies that they are very abundant in elliptical galaxies, making up >80% of the total number of stars and contributing >60% of the total stellar mass. We infer that the IMF in massive star-forming galaxies in the early Universe produced many more low mass stars than the IMF in the Milky Way disk, and was probably slightly steeper than the Salpeter form in the mass range 0.1 - 1 Msun.Comment: To appear in Natur

    The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    Get PDF
    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above ~300 km s^(–1) to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests

    The Halo Occupation Distribution of Active Galactic Nuclei

    Full text link
    Using a fully cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation, we examine the effects of environmental factors (e.g., local gas density, black hole feedback) on the halo occupation distribution of low luminosity active galactic nuclei (AGN). We decompose the mean occupation function into central and satellite contribution and compute the conditional luminosity functions (CLF). The CLF of the central AGN follows a log-normal distribution with the mean increasing and scatter decreasing with increasing redshifts. We analyze the light curves of individual AGN and show that the peak luminosity of the AGN has a tighter correlation with halo mass compared to instantaneous luminosity. We also compute the CLF of satellite AGN at a given central AGN luminosity. We do not see any significant correlation between the number of satellites with the luminosity of the central AGN at a fixed halo mass. We also show that for a sample of AGN with luminosity above 10^42 ergs/s the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The radial distribution of AGN inside halos follows a power law at all redshifts with a mean index of -2.33 +/- 0.08. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides a theoretical tool for interpreting current and future measurements of AGN clustering.Comment: 14 pages, 11 figures, 2 Tables (Matches the MNRAS accepted version
    corecore