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ABSTRACT

We present an analysis of the clustering of galaxies as a function of their stellar mass at 1 < z < 2 using data from
the NEWFIRM Medium Band Survey (NMBS). The precise photometric redshifts and stellar masses that the NMBS
produces allow us to define a series of stellar mass limited samples of galaxies more massive than 7 × 109 M�,
1 × 1010 M�, and 3 × 1010 M� in three redshift intervals centered on z = 1.1, 1.5, and 1.9, respectively. In each
redshift interval, we show that there exists a strong dependence of clustering strength on the stellar mass limit of the
sample, with more massive galaxies showing a higher clustering amplitude on all scales. We further interpret our
clustering measurements in the ΛCDM cosmological context using the halo model of galaxy clustering. We show
that the typical halo mass of both central and satellite galaxies increases with stellar mass, whereas the satellite
fraction decreases with stellar mass, qualitatively the same as is seen at z < 1. We see little evidence of any redshift
dependence in the relationship between stellar mass and halo mass over our narrow redshift range. However, when
we compare our measurements with similar ones at z � 0, we see clear evidence for a change in this relation. If we
assume a universal baryon fraction, the ratio of stellar mass to halo mass reveals the fraction of baryons that have
been converted to stars. We see that the peak in this star formation efficiency for central galaxies shifts to higher
halo masses at higher redshift, moving from �7×1011 h−1 M� at z � 0 to �3×1012 h−1 M� at z � 1.5, revealing
evidence of “halo downsizing.” Finally, we show that for highly biased galaxy populations at z > 1 there may be
a discrepancy between the space density and clustering predicted by the halo model and the measured clustering
and space density. This could imply that there is a problem with one or more ingredient of the halo model at these
redshifts, for instance, the halo bias relation may not yet be precisely calibrated at high halo masses or galaxies
may not be distributed within halos following a Navarro–Frenk–White profile.

Key words: cosmology: observations – galaxies: evolution – galaxies: formation – galaxies: halos – large-scale
structure of universe

Online-only material: color figures

1. INTRODUCTION

Understanding the formation and evolution of galaxies in
a cosmological context remains one of the most challenging
problems in modern astrophysics. In the current cosmological
framework, where the mass in the universe is dominated by cold
dark matter (CDM), luminous galaxies form at the centers of
dark matter halos via the cooling and condensation of baryons
(White & Rees 1978; Fall & Efstathiou 1980; Blumenthal et al.
1984). This means that the properties of galaxies are directly
coupled to those of the dark matter halos in which they live.

If we wish to understand galaxy formation within this context,
it becomes important to try to link the observed properties
of galaxies, such as stellar mass or color, to the mass of the
halos hosting galaxies with those observed properties, to better
understand the physical processes involved. Making such a
direct link can be achieved relatively easily in massive clusters of

8 Visiting Astronomer, Kitt Peak National Observatory, National Optical
Astronomy Observatory, which is operated by the Association of Universities
for Research in Astronomy (AURA) under cooperative agreement with the
National Science Foundation.
9 Hubble Fellow.

galaxies, with X-ray, Sunyaev–Zel’dovich effect and strong and
weak lensing measurements, but it is much more challenging for
less massive halos. Dynamical measurements of bound satellites
(e.g., More et al. 2010), or strong (e.g., Auger et al. 2010)
and weak (e.g., Mandelbaum et al. 2006) gravitational lensing,
while effective techniques, are observationally expensive and
have thus mainly been used for galaxies in the local universe,
with only a few studies up to z ∼ 1 (e.g., Heymans et al. 2006;
Conroy et al. 2007).

Measuring the spatial clustering of galaxies provides an
alternative approach to relating galaxy properties to those of
the dark matter distribution. More clustered populations must
occupy regions of higher dark matter density (i.e., more massive
dark matter halos), than less clustered populations. The desire to
determine the link between galaxies and dark matter halos from
clustering measurements has led to the development of the Halo
Occupation Distribution (HOD) framework (Jing et al. 1998; Ma
& Fry 2000; Peacock & Smith 2000; Seljak 2000; Scoccimarro
et al. 2001; Berlind & Weinberg 2002; Cooray & Sheth 2002).
The HOD characterizes the statistical relationship between
galaxies and dark matter halos by describing the probability
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that a halo of a given mass hosts a certain number of galaxies
with a given property.

The recent completion of large redshift surveys in the local
universe such as the Sloan Digital Sky Survey (SDSS; York
et al. 2000) and the Two Degree Field Galaxy Redshift survey
(Colless et al. 2001) have allowed precise measurements of the
clustering of galaxies as a function of their intrinsic properties,
such as luminosity, color, star formation rate, and morphology
(Norberg et al. 2001, 2002; Zehavi et al. 2002; Budavári et al.
2003; Madgwick et al. 2003; Zehavi et al. 2005; Li et al. 2006;
Swanson et al. 2008; Ross & Brunner 2009; Loh et al. 2010; Ross
et al. 2010; Zehavi et al. 2010). This has led to an established
observational picture with galaxies becoming more clustered
on all scales as their luminosity or stellar mass increases. As
the color becomes redder, or the star formation rate decreases,
the clustering strength again increases where the magnitude of
the increase becomes larger on small scales.

These relationships between galaxy properties and clustering
strength can straightforwardly be interpreted in the framework
of the HOD (or closely related conditional luminosity function
(CLF); Yang et al. 2003). Such analyses reveal an increase in
the typical mass of the host halos as the galaxy stellar mass
increases, and that the distribution of satellite galaxies in massive
halos is a strong function of their color (or star formation
rate; Yan et al. 2003; Yang et al. 2005; Zehavi et al. 2005;
Zheng et al. 2007; Ross & Brunner 2009; Zehavi et al. 2010).
Such constraints on the relationship between galaxy properties
and those of dark matter halos provide both insight into the
physics of galaxy formation and particularly strong tests of any
cosmological galaxy formation model.

Observations of galaxy clustering up to a redshift of one,
from both large spectroscopic and photometric redshift surveys,
appear to show similar trends as those observed in the local
universe. More massive/luminous galaxies show stronger clus-
tering and are thus associated with more massive halos, and the
relationships between color and clustering seem to persist (Coil
et al. 2004; Le Fèvre et al. 2005; Phleps et al. 2006; Coil et al.
2006; Pollo et al. 2006; Coil et al. 2008; Meneux et al. 2008;
McCracken et al. 2008; Meneux et al. 2009; Simon et al. 2009;
Abbas et al. 2010). Again the HOD has been effectively used
to interpret these measurements (Yan et al. 2003; Phleps et al.
2006; Zheng et al. 2007; Abbas et al. 2010), and perhaps even
more importantly has allowed measurements at several epochs
to be combined with the evolution of the halo properties to un-
derstand the evolution of galaxy properties in a cosmological
context (Yan et al. 2003; Conroy et al. 2006; Zheng et al. 2007;
White et al. 2007; Wake et al. 2008b; Brown et al. 2008; Conroy
& Wechsler 2009; Abbas et al. 2010).

At z > 1, the picture becomes less clear, mainly as a
result of the difficulty in constructing complete volume-limited
samples of galaxies at these early epochs. The most precise
clustering measurements have come from samples of Lyman
break galaxies (LBGs). These galaxies show strong clustering
strengths which depends on their luminosity (Adelberger et al.
2005a, 2005b; Ouchi et al. 2005; Lee et al. 2006, 2009;
Hildebrandt et al. 2009; Bielby et al. 2010). However, these
samples comprise relatively blue, unobscured, star-forming
galaxies and do not represent a complete sample. In particular,
the LBG selection misses the most massive galaxies, which tend
to be red and faint in the optical and require deep near-infrared
imaging for their selection (van Dokkum et al. 2006).

Several studies of the clustering of z > 1 massive galaxies
selected using a variety of optical/near-infrared color selection

techniques have been undertaken: extremely red objects (EROs;
Daddi et al. 2000; Roche et al. 2002; Brown et al. 2005; Kong
et al. 2006, 2009; Kim et al. 2011), BzKs (Kong et al. 2006;
Hayashi et al. 2007; Blanc et al. 2008; Hartley et al. 2008;
McCracken et al. 2010), and distant red galaxies (DRGs;
Grazian et al. 2006; Foucaud et al. 2007; Quadri et al. 2007,
2008; Kim et al. 2011). These studies revealed strong clus-
tering and some limited evidence for a luminosity and color
dependence. However, due to the relatively poor quality of the
photometric redshifts of these samples and the effect the color
selection has in limiting the range of galaxy types selected, it
has been difficult to draw any strong conclusions regarding the
relationship between luminosity or stellar mass to halo mass at
these redshifts.

This situation is beginning to change with the advent of wide-
field near-infrared cameras, which have enabled the construction
of wide and deep near-infrared-selected galaxy samples at
z > 1. While it is still almost impossible to generate complete
spectroscopic samples of galaxies at these redshifts, it has been
possible to combine multiple near-IR bands with deep optical
imaging to produce reasonable photometric redshifts and stellar
mass estimates. For example, Foucaud et al. (2010) combine
near-IR imaging from the Palomar Observatory Wide-Field
Infrared Survey with optical imaging from the CFHT to define
galaxy samples selected by redshift and stellar mass at z < 2,
based on photometric redshifts accurate to δz/(1 + z) � 0.07.
They then use these samples to measure the stellar mass
dependent clustering and by using a simple halo model relate,
the galaxy stellar mass to the dark matter halo mass.

In this work, we make similar measurements using the
NEWFIRM Medium Band Survey (NMBS; van Dokkum et al.
2009). The NMBS combines deep near-IR imaging through
five medium band filters, with multiple deep optical, ultraviolet
and IR band imaging to produce precise (δz/(1 + z) � 0.02)
photometric redshifts and stellar mass estimates. We use these
data to measure the clustering as a function of stellar mass for
complete stellar mass limited samples with masses >7×109 M�
and 1 < z < 2. We then use the latest halo modeling techniques
to relate the stellar mass of galaxies to the mass of the halos in
which they reside.

In Section 2, we describe the NMBS. In Section 3, we
describe how we define the stellar mass limited samples and
the calculation of the correlation function. In Section 4, we
present our measurements of the clustering as a function of
stellar mass. We describe the halo model in Section 5 and the
resulting relationships between stellar mass and halo mass in
Section 6 and summarize and conclude in Section 7.

Throughout this paper, we assume a flat Λ-dominated CDM
cosmology with Ωm = 0.27, H0 = 73 km s−1 Mpc−1, and
σ8 = 0.8 unless otherwise stated.

2. DATA

2.1. The NEWFIRM Medium Band Survey

The galaxy samples are selected from the NMBS, a moder-
ately wide, moderately deep near-infrared imaging survey (van
Dokkum et al. 2009). The survey used the NEWFIRM camera
on the Kitt Peak 4 m telescope. The camera images a 28′ × 28′
field with four arrays. The gaps between the arrays are rela-
tively small, making the camera very effective for deep imaging
of 0.25 deg2 fields. We developed a custom filter system for
NEWFIRM, comprised of five medium bandwidth filters in the
wavelength range 1–1.7 μm. As shown in van Dokkum et al.
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(2009), these filters pinpoint the Balmer and 4000 Å breaks of
galaxies at 1.5 < z < 3.5, providing accurate photometric red-
shifts and improved stellar population parameters. The survey
targeted two 28′ ×28′ fields: a subsection of the COSMOS field
(Scoville et al. 2007) and a field containing part of the AEGIS
strip (Davis et al. 2007). Coordinates and other information are
given in van Dokkum et al. (2009). Both fields have excellent
supporting data, including ultraviolet (Galaxy Evolution Ex-
plorer, GALEX), extremely deep optical ugriz (CFHT Legacy
Survey10) and deep mid-IR (Spitzer IRAC and MIPS; Barmby
et al. 2006; Sanders et al. 2007) imaging. The reduced CFHT
mosaics were kindly provided to us by the CARS team (Erben
et al. 2009; Hildebrandt et al. 2009). Additionally, the COSMOS
fields include deep Subaru BVriz and 12 optical medium band
images.11 The NMBS adds six filters: J1, J2, J3, H1, H2, and K.
Filter characteristics of the five medium band filters are given in
van Dokkum et al. (2009), and the AB zero points can be found
in Whitaker et al. (2011).

The data reduction, analysis, and properties of the catalogs
are described in Whitaker et al. (2011). In the present study,
we use a K-selected catalog based on the full NMBS data set
(as described in Whitaker et al. 2011). All optical and near-IR
images were convolved to the same point-spread function (PSF)
before measuring aperture photometry. Following previous
studies (Labbé et al. 2003; Quadri et al. 2007) photometry was
performed in relatively small “color” apertures to optimize the
signal-to-noise ratio (S/N). Total magnitudes in each band were
determined from the SExtractor AUTO aperture flux (Bertin &
Arnouts 1996), with an additional aperture correction computed
from the K-band growth curve. The aperture correction is a
point-source-based correction that accounts for flux outside of
the AUTO aperture. We note that about 10% of the objects
detected by SExtractor are classified as single objects but are
actually blended. We use a deblended catalog here and refer the
reader to Whitaker et al. (2011) for the details of the deblending
algorithm employed.

Photometric redshifts were determined with the EAZY code
(Brammer et al. 2008), using the full NUV–8 μm spectral energy
distributions (SEDs; NUV–K for objects in the ∼50% of our
AEGIS field that does not have Spitzer coverage). Publicly
available redshifts in the COSMOS and AEGIS fields indicate
that the redshift errors are very small at σz/(1 + z) < 0.02 (see
Brammer et al. 2009; Whitaker et al. 2010, 2011). Although
there are very few spectroscopic redshifts of optically faint
K-selected galaxies in these fields, we note that we found a
similarly small scatter in a pilot program targeting galaxies from
the Kriek et al. (2008) near-IR spectroscopic sample (see van
Dokkum et al. 2009).

Each galaxy within the survey is assigned a weight in each
of the NMBS bands based on the fraction of the maximum
exposure present at the galaxies position. In order to ensure both
a minimum and even S/N coverage for our samples, we only use
galaxies in areas that have a minimum weight (wmin) > 0.3, i.e.,
the least exposed optical to near-IR band has at least 30% of the
exposure time as the most exposed part of the image. The regions
around bright stars are also excluded from our analysis, as faint
galaxies in these regions are either obscured by the foreground
star or have systematically incorrect magnitudes due to scattered
light. After the removal of these regions the total remaining area
is 0.201 deg2 in the AEGIS field and 0.189 deg2 in COSMOS.

10 http://www.cfht.hawaii.edu/Science/CFHLS/
11 http://irsa.ipac.caltech.edu/data/COSMOS/images/

Stellar masses and other stellar population parameters were
determined with FAST (Kriek et al. 2009), using the models
of Maraston (2005), the Calzetti et al. (2000) reddening law,
and exponentially declining star formation histories. Masses
and star formation rates are based on a Kroupa (2001) initial
mass function (IMF); following Brammer et al. (2008) rest-
frame near-IR wavelengths are downweighted in the fit as their
interpretation is uncertain (see, e.g., van der Wel et al. 2006).
More details are provided in Brammer et al. (2009).

There exist significant systematic uncertainties in the deter-
mination of galaxy stellar masses based on uncertainties in the
IMF, stellar population synthesis model, extinction law and star
formation history which can result in uncertainties in the mass
of a factor of a few (e.g., see Marchesini et al. 2009; Muzzin
et al. 2009; Conroy et al. 2009). In this work, our main interest
is in determining the dependence of the clustering amplitude on
stellar mass and then characterizing that dependence in terms of
halo mass. What we are really interested in is not the absolute
determination of the stellar mass but the rank order, as we wish
to find all galaxies above some stellar mass limit. While the
systematics may cause some scatter in this order it is much less
than the systematic error on the overall normalization.

3. THE TWO-POINT CORRELATION FUNCTION

3.1. Stellar Mass Limited Samples

The aim of this paper is to investigate how the clustering of
galaxies at 1 < z < 2 depends on their stellar masses, and, with
the use of the halo model, determine the relationship between
stellar mass and halo mass. The simplest, most robust, and
systematic free approach is to define volume-limited samples,
with a variable stellar mass limit but constant volume. With
such samples we may directly compare the angular correlation
functions of different stellar mass limited samples, and make
use of the simplest implementation of the halo model.

In order to study redshift evolution, we first define three
galaxy samples with slightly overlapping redshift intervals,
0.9 < z < 1.3, 1.2 < z < 1.75, and 1.6 < z < 2.2. Within each
redshift range we define several mass limited samples where the
lowest stellar mass limit is defined by the stellar mass limit of
the survey at the highest redshift in the redshift bin. The highest
stellar mass limit is defined so that there are sufficient galaxies
to make a reasonable measurement of the correlation function.
These samples are described in Table 1.

We estimate the stellar mass completeness limit at a given
redshift as follows. We rank order all of our galaxies by redshift.
At the redshift of interest, we select the next 1000 galaxies
of lower redshift. For those 1000 galaxies we find the 90th
percentile in the K-band mass-to-light ratio. Finally, the stellar
mass completeness is determined as the mass a galaxy would
have with this 90th percentile mass-to-light ratio at the 99%
K-band completeness limit of the survey (K = 22.8; Whitaker
et al. 2011). For example, for our 0.9 < z < 1.3 sample we
wish to estimate the completeness at z = 1.3 and so select
the 1000 galaxies lying immediately below that redshift which
corresponds to the range 1.258 < z < 1.3. We then find the
90th percentile of the K-band mass-to-light ratio of these 1000
galaxies. At K = 22.8, the completeness limit of our survey,
this corresponds to a stellar mass of 7.08 × 109 M�. Since the
galaxies we use in this calculation are at lower redshift than
our target (z = 1.3) they will be more complete in stellar mass
than the actual galaxies at z = 1.3 yet are sufficiently close in
redshift to be representative of those galaxies.
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Table 1
Details of the Stellar Mass Limited Samples and Power Law Fits to Their Correlation Functions

z Range SM z̄ NGal ND ρ 0.0011 < θ < 0.11, γ = 1.8 0.01 < θ < 0.11, γ = 1.6

Aw r0
χ2

dof Aw r0
χ2

dof
0.9 < z < 1.3 0.7 1.10 8970 3756.0 6.16 5.10 ± 0.50 5.80 ± 0.32 0.20 9.60 ± 2.05 5.86 ± 0.78 0.03
0.9 < z < 1.3 1.0 1.10 7068 3037.5 5.03 5.60 ± 0.50 6.07 ± 0.30 0.29 9.60 ± 2.10 5.82 ± 0.80 0.03
0.9 < z < 1.3 1.9 1.10 3969 1842.0 3.13 6.80 ± 0.80 6.66 ± 0.44 0.62 10.10 ± 2.75 5.90 ± 1.01 0.05
0.9 < z < 1.3 3.0 1.09 2666 1320.3 2.28 7.50 ± 0.95 6.97 ± 0.49 0.69 10.70 ± 3.10 6.06 ± 1.11 0.04
0.9 < z < 1.3 5.0 1.09 1361 727.4 1.27 10.40 ± 1.95 8.28 ± 0.86 0.52 14.40 ± 5.75 7.23 ± 1.83 0.04
1.2 < z < 1.75 1.0 1.50 7623 3814.7 3.54 4.30 ± 0.45 6.23 ± 0.36 1.53 7.20 ± 1.80 5.75 ± 0.90 1.11
1.2 < z < 1.75 1.9 1.50 4629 2358.4 2.24 5.60 ± 0.70 7.14 ± 0.50 1.14 9.60 ± 2.35 6.79 ± 1.05 0.90
1.2 < z < 1.75 3.0 1.50 3264 1682.4 1.62 5.50 ± 0.65 7.00 ± 0.46 2.02 10.50 ± 2.15 7.11 ± 0.91 0.99
1.2 < z < 1.75 5.0 1.50 1739 938.5 0.93 6.50 ± 1.00 7.55 ± 0.65 1.42 13.20 ± 2.85 8.04 ± 1.09 0.50
1.2 < z < 1.75 6.0 1.49 1288 709.2 0.71 6.40 ± 1.25 7.50 ± 0.81 1.61 14.50 ± 3.40 8.54 ± 1.26 1.62
1.6 < z < 2.2 3.0 1.87 2900 1501.2 1.09 5.40 ± 0.75 7.21 ± 0.56 0.61 9.40 ± 2.25 6.82 ± 1.03 0.04
1.6 < z < 2.2 5.0 1.87 1631 879.5 0.67 6.30 ± 1.15 7.66 ± 0.78 0.45 11.00 ± 3.05 7.31 ± 1.28 0.26
1.6 < z < 2.2 7.0 1.88 942 513.0 0.40 7.50 ± 1.30 8.30 ± 0.80 0.33 15.00 ± 3.45 8.72 ± 1.26 0.20
1.6 < z < 2.2 10.0 1.87 487 277.0 0.22 14.00 ± 2.75 11.49 ± 1.26 0.76 22.40 ± 6.90 10.93 ± 2.12 0.17

Notes. Stellar masses (SM) are in units of 1010 M�, the space density (ρ) has units 10−3 h3 Mpc−3. The errors are 1σ .

To determine which galaxies are included in any given
redshift interval we make use of the full redshift probability
distribution functions (PDFs) output by the EAZY photometric
redshift code. All galaxies that have any non-zero part of
their PDF within the given redshift interval are included in
our samples. However, each is given a weight equal to the
fraction of the total probability that is within the interval.
This has the effect of downweighting galaxies with uncertain
redshifts that lie close to the edge of the desired redshift
interval, or those with multiple peaks, where one peak is within
and one or more is outside. We use these weights throughout
when calculating redshift distributions, space densities, and the
angular correlation function. Table 1 lists the total number of
galaxies contributing to each sample (NGal), the sum of the
weights of these galaxies (ND), which gives the effective number
of “true” galaxies in the sample, and the mean redshift of the
weighted sample.

Figure 1 shows the redshift distributions of two samples with
different stellar mass limits from each redshift interval, cal-
culated using the PDF weights. While there are many galaxies
with some probability outside of the redshift intervals, the effect
of the weight combined with the accuracy of the photometric
redshifts is to cause a relatively sharp transition. Large-scale
structures are clearly visible in the redshift distributions reflect-
ing the accuracy of the photometric redshifts. The same structure
is repeated for all stellar mass limits.

The two-point correlation function is a straightforward way
to measure the spatial clustering of our galaxy samples, and
when combined with the space density can produce very
strong constraints on the distribution of galaxies within dark
matter halos. Since we do not have sufficiently precise red-
shift information for our sources, we choose to calculate the
angular correlation function and then relate it to the real
space correlation function using Limber’s equations (Limber
1954).

3.2. The Angular Correlation Function

The two-point angular correlation function, w(θ ), is defined
as the excess probability above Poisson of finding an object at
an angular separation θ from another object. This is calculated
by comparing the number of pairs as a function of angular scale
in our galaxy catalogs, with the number in a random catalog,

which covers the same angular region as our data. We make this
measurement using the Landy & Szalay (1993) estimator,

wobs(θ ) = 1

RR(θ )

[
DD(θ )

(
nR

nD

)2

− 2DR(θ )

(
nR

nD

)
+ RR(θ )

]
,

(1)
where DD(θ ), DR(θ ), and RR(θ ) are data–data, data–random,
and random–random pair counts, respectively, and nD and nR are
number of galaxies in the data and random catalogs, respectively.

We generate random catalogs for each galaxy sample follow-
ing the angular masks of the survey, i.e., excluding areas with
Wmin < 0.3 and those around bright stars. The random catalog
has a constant space density and at least 20 times the number of
random points as data points.

As discussed in Section 3.1, we associate a weight with each
galaxy calculated as the fraction of the photometric redshift
PDF that lies within a given redshift slice. When calculating the
correlation function each pair is weighted as the multiple of the
weights of each galaxy in the pair and the pair count is then the
sum of the weights over all pairs in the angular bin. Similarly, the
normalization factor nD is the sum of the weights of all galaxies
in the sample and is given in Table 1. This means that galaxies
that are most likely to lie within our desired redshift interval
are given more weight in the correlation function calculation,
which should lead to a higher signal-to-noise measurement. This
scheme is in essence similar to the one proposed by Myers et al.
(2009).

Our weighting is equivalent to a Monte Carlo approach
of randomly assigning a redshift to each galaxy based on
its PDF, applying the redshift cut, calculating the correlation
function, repeating many times and finally calculating the mean
of all these correlation functions. We verify this by applying
this procedure to one of our galaxy samples calculating the
correlation function 100 times and find the mean correlation
function agrees with the weighed correlation function to within
1% on all scales. We find a variance of <10% on all scales which
indicates the expected error due to the photometric redshifts if
one were to use a single sample that utilized the best photometric
redshift estimate. The weighting scheme should yield errors due
to the photometric redshift uncertainties somewhat smaller than
this.
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Figure 1. Example of redshift distributions in the three redshift intervals calculated by summing the photometric redshift PDFs of all galaxies with each galaxy PDF
weighted by the fraction of the probability lying within the redshift interval in question (see the text for details). For each redshift interval we show the redshift
distribution for lowest stellar mass limited sample (solid lines) and for stellar masses >5 × 1010 M� (dashed lines). Large-scale structures are clearly visible in the
redshift distributions reflecting the accuracy of the photometric redshifts.

Figure 2. Angular correlation function for the AEGIS field (blue), the COSMOS field (red), and both fields combined (black) for the lowest mass limit samples in
each redshift interval. The top axis shows the angular scale converted to a comoving separation at the mean redshift of each sample. All the correlation functions show
the typical power-law form and do show some evidence of a break at around 0.◦01, particularly in the highest redshift bin. There is also evidence of cosmic variance
between the two fields at a level consistent with the magnitude of the errors and given the covariance on large scales.

(A color version of this figure is available in the online journal.)

We note that if we just use the best photometric redshift rather
than the PDF, selecting all galaxies that have a best photometric
redshift within a given redshift range and using no weight, the
resulting angular correlation functions are almost identical to
those calculated with the PDF weighting. This is consistent
with the error estimated from the Monte Carlo approach. This
again reflects the accuracy of our photometric redshifts since
most of the galaxies selected in this manner have all of their
redshift PDF within the redshift range.

The calculated angular correlation functions for the lowest
stellar mass limited samples in all three redshift ranges are
shown in Figure 2. They show the characteristic power-law
shape, with evidence of a break at ∼1 Mpc becoming more
apparent as higher redshift as expected by the halo model (see
Section 5).

3.3. Integral Constraint

Since our fields cover a relatively small area, we expect
the integral constraint (Groth & Peebles 1977) to have a
significant effect on our clustering measurements, leading to
the underestimation of the clustering strength by a constant

factor (IC). IC is equal to the fractional variance of the galaxy
counts on the size of the field. Therefore, the magnitude of IC
depends on both the field size and the clustering strength of the
sample, increasing as the field size decreases and the clustering
increases.

Following Infante (1994) and Roche et al. (1999), we numer-
ically estimate IC using

IC =
∑

i w(θi)RR(θi)∑
i RR(θi)

. (2)

This estimate is often made using an iterative process: a
model for w(θi) is fit to wobs(θ ) and IC is calculated using
Equation (2). This correction is then applied to wobs(θ ), the
model re-fit, and IC recalculated until there is convergence. It is
typical to assume a power law as the functional form of w(θ );
however, unless the slope is fixed this iterative process tends to
produce large values of IC and flat slopes. We therefore choose
to determine the integral constraint when fitting the halo model
(see Section 5). The halo model almost exactly reproduces the
shape of the correlation function, something a simple power
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law does not. During the fitting process IC is calculated for
each model correlation function and subtracted from the model
before being fit to the data. As a test of our procedure we
also estimated IC using the mock galaxy catalogs we generated
from the Millennium simulation to calculate the errors on the
correlation function (see Section 3.5). The difference between
the correlation function calculated for the full simulation and the
mean of the correlation functions in the multiple sub-regions,
the size of our fields, give a direct measurement of IC. We find
that both methods give consistent results with values ranging
from 0.0150 ± 0.0005 to 0.033 ± 0.001.

3.4. The Real Space Correlation Function

Given a redshift distribution, the angular correlation function
can be directly determined from the real space correlation
function, ξ (r), using Limber’s equation (Limber 1954)

w(θ ) = 2

c

∫ ∞

0
dzH (z)

(
dn

dz

)2 ∫ ∞

0
duξ (r =

√
u2 + x2(z̄)θ2),

(3)
where c is the speed of light, H (z), the Hubble constant at
redshift z, is given by H (z) = H0

√
ΩM (1 + z)3 + ΩΛ assuming

a flat universe, dn/dz is the normalized redshift distribution,
and x(z̄) is the comoving distance to the median redshift.

Conversely, if a functional form is assumed for the real space
correlation function then an accurate measurement of both the
angular correlation function and the redshift distribution can be
used to determine ξ (r). For the case where ξ (r) is a power law,

ξ (r) =
(

r

r0

)γ

(4)

then w(θ ) is also a power law,

w(θ ) = Awθδ, (5)

where δ = γ − 1 and

Aw = r
γ

0

c
Γ(1/2)

Γ
(

γ−1
2

)
Γ
(

γ

2

) ∫ ∞

0
dzH (z)

(
dn

dz

)2

x(z) (6)

with Γ indicating the gamma function. We make use of
Equation (3) when fitting the halo model in Section 5 and
Equation (6) when comparing clustering amplitudes in
Section 4.

In both Equations (3) and (6), dn/dz is the normalized
redshift distribution for a given sample without any clustering,
i.e., it reflects the selection function of the galaxy sample. Large-
scale structure is clearly visible in our redshift distributions and
so we remove its effects by making a polynomial fit to each
redshift distribution. We note that despite the presence of visible
structure using the fit rather than the measured dn/dz makes
essentially no difference to any of our results. Even though our
photo-z errors are small enough to reveal large-scale structure
the rms error still corresponds to �60 h−1 Mpc, sufficiently
smearing out the clustering signal on large enough scales such
that it has a negligible effect.

3.5. Estimating Errors

Whether we wish to make comparisons between the clustering
of our samples or fit models to the clustering we need to make an
accurate estimate of the measurement errors and the correlation
between the data points in the form of a covariance matrix.

There are a number of ways in which the errors on clustering
measurements maybe estimated; simple Poisson errors, internal
estimates such as jackknife and bootstrap re-sampling, and mock
galaxy catalogs based on N-body simulations or analytical halo
distributions. Poisson errors are known to be an underestimate
of the true error, particularly on large scales, and do not provide
an estimate of the covariance.

Both jackknife and bootstrap re-sampling methods have been
shown to produce reasonable estimates of the full covariance
(e.g., Zehavi et al. 2005) but may suffer from some systematic
issues (Norberg et al. 2009). They are also only really effective
where the scales of interest are significantly smaller than the
region of the survey being removed in each re-sampling.

Mock catalogs, in which simulated galaxies have the same
clustering properties as the real galaxies, may provide the best
error estimates since large numbers of individual surveys can
be created and the full covariance between them accurately
calculated. The only potential problem with this method is that
there could be higher order clustering effects not encoded in
the two-point correlation function from which the mocks are
generated.

We have chosen to use mock catalogs generated from the
Millennium simulation (Springel et al. 2005) to generate the
covariance matrices we use for all fits to the measured corre-
lation functions. We discuss in Appendix A the details of our
approach, and the reasons for this choice. In brief, we first fit a
HOD (see Section 5) to the correlation function and space den-
sity of the observed NMBS samples, using an estimate of the
errors from jackknife re-sampling. We then populate halos ac-
cording to this HOD in the full Millennium simulation box at the
appropriate redshift for the sample. The Millennium box is then
split in to multiple sub-regions with the same geometry as the
survey fields and the correlation function is calculated for each.
The covariance matrix is then generated from the correlation
functions of each sub-region.

We note that when comparing the clustering between our
stellar mass limited samples these errors may well be an
overestimation since we assume that each measurement is
independent, when in fact it is made within the same volume.
They are the correct errors if one wished to compare with a
similar measurement made in a different region of sky. We
discuss this issue further in Appendix A.

3.6. Uncertainties in the Redshift PDFs

As described above, the photometric redshift PDFs gener-
ated with the EAZY code are used twice in our analysis; first,
to assign a weight to each galaxy in the correlation function
calculation, and second to calculate the redshift distribution
which is used to convert the angular to the real space correla-
tion function. Although these PDFs are calibrated against the
thousands of spectroscopic redshifts in our fields, the relative
lack of spectroscopic coverage in the 1.2 < z < 2.2 interval
of interest to this paper means we cannot be absolutely cer-
tain of their reliability in this range. That being said, we do
have good reason to expect any uncertainty in the PDFs to have
a small effect on our measurements. Only galaxies that have
some part of their PDF outside of the redshift range of the
sample are being affected by the use of the PDFs in our w(θ )
calculations. Since the redshift intervals that we select are much
broader than the PDFs, the number of these galaxies should
be small, consisting of those lying close to the redshift bound-
aries or those with multiple probability peaks that are widely
separated.
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In order to explicitly test the effect of uncertainties in the
PDFs, we modify the calibration to generate two new sets of
PDFs that are approximately either half or twice the width of
the best estimate of the true PDF. While we are confident that
our calibration is more accurate than this factor of two, these
new samples will allow us to determine the effect in a worst-case
scenario.

We rerun the sample selection, clustering calculations and
halo model fits (see Section 5) for all of the samples using both
new sets of PDFs. We find that, at most, the clustering amplitude
is changed by 4%. As expected, this occurs for the samples with
the lowest stellar mass limit at each redshift, thus the faintest
galaxies, where the PDFs are already broadest. When we fit the
halo model, which includes the effect of the modified PDFs on
the redshift distribution and the space density as well as the
clustering, we find that the HOD parameters are changed by at
most 6%, again for the lowest mass limit. It is interesting to note
that there is an even smaller effect on the derived parameters
such as the bias, mean halo mass, and satellite fraction, which
change by no more than 2%.

Since these modified PDFs represent something of a worst-
case scenario, and any differences are significantly less than the
measurement errors, we are confident that any inaccuracies in
the PDFs are not a concern for our analysis.

It is important to note that while the above test demonstrates
that our analysis is relatively insensitive to the photometric
redshift PDF accuracy, within reasonable limits, it does not
mean that we could produce similar quality measurements of
the dependence of clustering on stellar mass with less accurate
photometric redshifts. A reduction in the redshift accuracy
would increase the error on the stellar mass estimates, causing
our mass limits to be poorly defined. This would cause the
samples we define to become increasing less close to being
volume-limited, making the standard halo model assumptions
invalid, and the fraction of catastrophic failures would increase,
causing systematic variations in the redshift and stellar mass
distributions.

3.7. Field-to-field Variation

Figure 2 shows the angular correlation function of the
lowest mass limited sample in the three redshift intervals
in both the AEGIS and COSMOS fields separately and for
both fields combined. The errors plotted in these correlation
functions, and in any further correlation function plots, are the
square root of the diagonal terms of the covariance matrices
generated using the mock catalogs. A correction due to the
integral constraint calculated from the HOD model has been
applied.

Visually there are differences between the correlation func-
tions from the two fields: the COSMOS field shows stronger
clustering at z̄ = 1.1 on large scales, while the opposite is true
at z̄ = 1.5. Within these redshift bins the same trends con-
tinue for the higher mass limited samples. This variation is to
be expected, as cosmic variance will play a role for fields of
this size. However, it should be noted that the differences in the
correlation functions between the fields are only of marginal
significance, particularly when the full covariance is taken into
account, due to the highly correlated nature of the largest scale
measurements.

In the remainder of the paper we will consider only measure-
ments from the combined fields, reducing both the statistical
and cosmic variance errors.

4. CLUSTERING AS A FUNCTION OF STELLAR MASS

The goal of this paper is to investigate how the clustering of
galaxies depends on galaxy stellar mass, and thus determine the
relationship between stellar mass and dark matter halo mass at
redshift 1 < z < 2. In this section, we present our two-point
correlation function measurements for the mass limited samples
and then test to see if there is a significant dependence on stellar
mass.

Figure 3 shows the two-point correlation functions for all of
the stellar mass limited samples in the three redshift intervals. A
trend is visible on all scales and at all redshifts of an increasing
clustering amplitude with increasing stellar mass limit.

When considering angular correlation functions, it is always
important to remember that the amplitude depends on both the
intrinsic clustering of the population (ξ (r)) and the normalized
redshift distribution (Equation (3)). However, our samples are
defined to be very close to being volume-limited, resulting in
the normalized redshift distributions being very similar for all
of the mass limits within a single redshift interval. It is therefore
reasonable to make a direct comparison between the angular
clustering measurements in this case.

To quantify the significance of the stellar mass dependent
clustering, we calculate the χ2 between the correlation functions
for the lowest and highest stellar mass samples in each redshift
bin using the covariance matrices for both samples. We choose
to fit in the range 0.◦0011 < θ < 0.◦11. The lower limit is chosen
to ensure we are not being affected by any remaining deblending
issues; the upper limit represents where the data become very
poorly measured and highly correlated with the smaller scale
points.

This χ2 test shows that in all three redshift intervals there is
a significant difference between the high and low stellar mass
correlation functions. The most significant difference is for the
z̄ = 1.1 sample where we find χ2 = 22.87 with 10 degrees of
freedom (dof) and a probability of 1.1% of the high and low
stellar mass clustering measurements being the same. At z̄ =
1.5 we measure a χ2 = 21.01 with 10 dof and a probability of
2.1%, and at z̄ = 1.9 we measure a χ2 = 18.75 with 10 dof
and a probability of 4.3%. While the highest redshift sample
has the lowest significance, showing a trend with stellar mass at
95%, it also has the smallest stellar mass range, a factor of 3.33
compared to factors of seven and six for the z̄ = 1.1 and z̄ =
1.5, respectively.

As we have already discussed, differences in the redshift
distributions between our mass limited samples could result
in differences in the amplitude of the clustering that are not
intrinsic. Even though we do not believe that this is a significant
issue for these data it is reassuring to make tests that are
independent of this effect. In Section 5, the halo model fits
will be free from this issue since the redshift distributions are
used in the halo model calculations. But first we shall use a
simpler approach, which has long been used in the literature, of
modeling the two-point correlation function as a power law.

Initially, we fit a power law to w(θ ) (Equation (5)) leaving
both the normalization (Aw) and slope (δ) as free parameters. We
choose to fit both over the full angular range of the correlation
function (0.◦0011 < θ < 0.◦11) and over a restricted range
(0.◦011 < θ < 0.◦11) which just covers the large-scale clustering.
Within the halo model there are two terms that contribute to
the overall correlation function: the one-halo term from pairs
within halos, and the two-halo term from pairs between halos.
This results in a characteristic feature at the scale of the typical
halo size and can often result in a change of slope at this scale
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Figure 3. Angular correlation function as a function of stellar mass limit in each redshift interval. The stellar mass limits in units of M� are given in the legend. For
clarity error bars are only shown for the lowest and highest stellar mass limits. The top axis shows the angular scale converted to a comoving separation at the mean
redshift of each sample. The solid lines (bottom panel) show the best-fitting HOD model fit to both the clustering and density, whereas the dashed lines (top panel)
are fits to the clustering only (see Section 5 for details). In each redshift interval, the clustering amplitude increases as the stellar mass increases. The HOD fits show
a similar increase in amplitude with stellar mass. When the space density is included in the fits the clustering amplitude at large scales is reduced; this is particularly
noticeable at z = 1.5 but is present at all redshifts (see Section 5.1.1).

(Berlind & Weinberg 2002). This transition is well established
in measurements of the correlation function (e.g., Zehavi et al.
2004) and can be seen in the correlation functions shown in
Figure 3.

Since we want to investigate how the amplitude of the
clustering varies with stellar mass we must fix the slope and
just fit for the amplitude. We find that slopes (δ) of 0.8 for all
scales and 0.6 for large scales are consistent with the individual
best fits for all of the samples and so fit with the slopes fixed
to these values. Using the best-fitting amplitudes, the redshift
distributions and Equation (6), we can calculate the correlation
length of the real space correlation function (r0).

Figure 4 shows the best-fitting values of r0 as a function of
stellar mass for the three redshift intervals (see Table 1 for the
values). Significant trends of an increasing correlation length
with stellar mass limit are present in all three redshift intervals
and for the fits to both angular ranges, with the exception of the
large-scale fit at z̄ = 1.1 where the trend is not very significant.
This confirms the results of the direct w(θ ) comparisons above,
showing that the clustering strength does depend significantly
on stellar mass at 1 < z < 2.

5. HALO MODEL ANALYSIS

The halo model (see Cooray & Sheth 2002 for a review)
assumes that the galaxy clustering signal encodes informa-
tion about the HOD—how the galaxies populate dark matter

halos—in particular, how the HOD depends on halo mass. In
essence, the HOD describes the probability distribution that a
halo of a given mass (M) hosts a certain number (N) of galaxies
of a given type, P (N |M).

In the halo model, every galaxy is associated with a halo and
all halos are 200 times the background density whatever the
mass M of the halo. Sufficiently massive halos typically host
more than one galaxy. The halo model we use distinguishes
between the central galaxy in a halo, and the other galaxies,
which are usually called satellites. This approach is motivated
by simulations (e.g., Kravtsov et al. 2004; Zheng et al. 2005)
and has been a standard assumption of semi-analytic galaxy
formation models for many years (e.g., Baugh 2006). There
is now strong observational evidence that these two types of
galaxies are indeed rather different, and that the halo model
parameterization of this difference is accurate (Skibba et al.
2007).

When considering a sample of galaxies with a fixed lumi-
nosity or stellar mass limit, an HOD that is close to a step
function for central galaxies and a power law for satellites is a
reasonable approximation. We choose to use the parameteriza-
tion introduced by Zheng et al. (2007) which has a soft cutoff
in the central galaxy HOD, allowing for the scatter in the stellar
mass halo mass relation, and a cut in the satellite power law
at low halo mass. This five-parameter analytic HOD was mo-
tivated by the desire to match the HODs from the simulations
presented in Zheng et al. (2005) and has since been shown to
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Figure 4. Spatial correlation length, r0, as a function of stellar mass limit in the
three redshift ranges. Values of r0 determined from power-law fits to the full
correlation function with the slope fixed at 1.8 (open circles) and from fits to
just the large scales with the slope fixed at 1.6 (filled circles) are shown. As the
stellar mass increases the clustering amplitude in real space also increases.

(A color version of this figure is available in the online journal.)

precisely reproduce the measured clustering in luminosity lim-
ited samples, which favor both the varying soft central cut and
the satellite cut (Zheng et al. 2007; Brown et al. 2008; Blake
et al. 2008; Ross & Brunner 2009; Ross et al. 2010; Zehavi et al.
2010). Our clustering measurements are not sufficiently pre-
cise to accurately constrain all five parameters simultaneously,
and so we choose to fix several of them in our analysis (see
Section 5.1). However, we choose to keep the five-parameter
form to enable an easier comparison to other work at lower
redshifts.

The details of the halo model calculation are similar to those
presented in Wake et al. (2008a, 2008b); however, there are
significant differences which we describe here. We present a
full description of our halo model calculation in Appendix B.

Following Zheng et al. (2007), the fraction of halos of mass
M which host centrals is modeled as

〈Nc|M〉 = 1

2

[
1 + erf

(
log M − log Mmin

σlog M

)]
. (7)

Only halos which host a central may host satellites. In
such halos, the number of satellites is drawn from a Poisson
distribution with mean

〈Ns |M〉 =
(

M − M0

M ′
1

)α

. (8)

Thus, the mean number of galaxies in halos of mass M is

〈N |M〉 = 〈Nc|M〉[1 + 〈Ns |M〉], (9)

and the predicted number density of galaxies is

ng =
∫

dM n(M) 〈N |M〉, (10)

where n(M) is the halo mass function, for which we use the
latest parameterization given by Tinker et al. (2010a).

We further assume that the satellite galaxies in a halo trace
a Navarro–Frenk–White (NFW) profile (Navarro et al. 1996)
around the halo center, and that the halos are biased tracers of
the dark matter distribution. The halo bias (b(M)) depends on
halo mass in a way that can be estimated directly from the halo
mass function (Sheth & Tormen 1999), and we use the most
up-to-date parameterization of Tinker et al. (2010a).

In Wake et al. (2008a, 2008b), we used the linear theory
power spectrum (PLin(k)) throughout the calculation, whereas
we now use the non-linear power spectrum at the redshift of
interest when calculating the two-halo term. We also apply the
scale-dependent bias and halo exclusion corrections given by
Tinker et al. (2005).

With these assumptions the halo model for ξ (r) is completely
specified (e.g., Cooray & Sheth 2002). We then calculate w(θ )
from ξ (r) using Equation (3).

In addition to ξ (r), we are interested in the satellite fraction,

Fsat =
∫

dM n(M) 〈Nc|M〉 〈Ns |M〉/ng, (11)

the fraction of the galaxies in a given sample that are satellite
galaxies in halos, and two measures of the typical masses of
galaxy host halos: an effective halo mass

Meff =
∫

dM M n(M) 〈N |M〉/ng, (12)

and the average effective bias factor

bg =
∫

dM n(M) b(M) 〈N |M〉/ng, (13)

where b(M) is the halo bias.
We show in Figure 5 an example HOD where we indicate

the effect of each of the five parameters in our model. Mmin is
the mass threshold for central galaxies, and represents the halo
mass which hosts on average 0.5 galaxies above the stellar mass
limit. σlog M determines the cutoff profile for the central galaxies
with higher values corresponding to a more gentle cutoff. Both
Mmin and σlog M also have more physical meaning (see Zheng
et al. 2005 and Zehavi et al. 2010 for details). In brief, the value
of Mmin for a sample of galaxies with a stellar mass limit SMmin,
corresponds to the halo mass that hosts central galaxies with
a median stellar mass of SMmin. σlog M is proportional to the
scatter in the stellar mass of galaxies living in halos of mass
Mmin. The halo occupation of satellite galaxies are described by
the characteristic mass M ′

1, the slope of the power law α, and
the low-mass cutoff M0.

5.1. HOD Fits

The HOD defined by Equations (7) and (8) contains five
free parameters: Mmin and σlog M for central galaxies and M ′

1,
M0, and α for satellite galaxies. Our correlation functions are
not sufficiently accurate to precisely constrain all five of these
parameters. In previous studies of the HOD (e.g., Zheng et al.
2007; Brown et al. 2008; Zehavi et al. 2010) it has been found
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Figure 5. Example HOD showing the mean number of galaxies per halo as a
function of halo mass. The dashed line shows the central galaxy distribution,
the dotted line the satellite distribution, and the solid line the total. Values of the
mass scales Mmin, M ′

1, and M0 are indicated by the arrows. The affects of σlog M

and α are also indicated. In brief, Mmin and M ′
1 are the mass thresholds for central

and satellite galaxies, respectively. σlog M controls the rate of truncation of the
central galaxy distribution. α is the slope of the satellite power-law distribution,
and M0 is the cutoff mass for the satellite power law.

(A color version of this figure is available in the online journal.)

that M0 � Mmin and we fix this relationship when fitting the
HOD. Furthermore, we find that both σlog M and α are very
poorly constrained by our measurements. There are reasonably
strong theoretical arguments based on the distribution of sub-
halos for α � 1 for all stellar mass limited samples (Kravtsov
et al. 2004; Zheng et al. 2005), which are supported by precise
clustering measurements in the local universe (e.g., Zehavi et al.
2010). As a result of this and since α has some considerable
degeneracy with M ′

1, we choose to fix α. We find that α = 1 is
an acceptable fit (<1σ ) for all samples and so we fix it to this
value in the remainder of the analysis.

There is also some degeneracy between Mmin and σlog M , and
since σlog M is so poorly constrained we choose to fix it also.
There is substantial observational evidence that σlog M increases
with increasing stellar mass (Zheng et al. 2007; Brown et al.
2008; Zehavi et al. 2010), and we see a hint of this when we allow
this parameter to be free. However, the trend is not significant
in our measurements, and we find all samples are consistent
with σlog M = 0.15 (<1σ ), so we fix it to this value. We are thus
interested in measuring how the two mass thresholds for central
and satellite galaxies (Mmin and M ′

1) depend on the stellar mass
limit of our samples.

A given HOD predicts both the clustering and space density
of a galaxy population and so both can be used when fitting.
The inclusion of the space density provides particularly strong
constraints on Mmin and since it can be expected to be very well
measured it is a very useful constraint on the HOD overall. The
dominant error on the space density, like the clustering, is cosmic
variance; we estimate this error using the same mock catalogs
used for the clustering error estimates and find the typical error
on the space density to be about 15%.

Tables 2 and 3 give the best-fitting values of the HOD
parameters Mmin and M ′

1 and their 1σ errors for fits to just the
clustering and the clustering and space density simultaneously
for all samples. These tables also contain the derived parameters

M1, the halo mass that on average hosts one satellite galaxy, as
well as ng, Fsat, Meff , and bg as given by Equations (10), (11),
(12), and (13), respectively. The best-fitting model w(θ )s are
shown in Figure 3.

5.1.1. A Discrepancy Between the Clustering and Space
Density in the Halo Model?

If the halo model is a good representation of our data, one
would expect the fits based on just the clustering and those
based on the clustering and space density to be consistent. Sev-
eral previous studies of high-redshift clustering have reported
difficulty in simultaneously fitting both the space density and
clustering within the halo model. For example, Quadri et al.
(2008, hereafter Q08) report this issue for DRGs at 2 < z < 3
and most recently Matsuoka et al. (2011) show a similar dis-
crepancy for the most massive galaxies at z � 1. Tinker et al.
(2010b) were able to fit the measured DRG clustering and space
density from Q08 using a better justified HOD model and the
latest halo mass bias relation from Tinker et al. (2010a), which
is steeper at higher bias than the Sheth et al. (2001) relation
used by Q08. However, they required that the field in Q08 have
a higher clustering amplitude than average, but were able to
demonstrate using simulations that this was not that unusual
due to cosmic variance, with just over 16% of their simulated
surveys showing clustering as strong as observed by Q08.

Figure 3 and the HOD fit parameters in Tables 2 and 3 show
a small systematic difference between the observed density and
clustering and that which is predicted by the model. This is
particularly noticeable for high stellar mass (high halo bias) and
at z̄ = 1.5 and 1.9. The discrepancy is in the sense that the HOD
model requires a smaller space density to match the clustering
than is observed. We illustrate this explicitly in two ways in
Figures 6 and 7. Figure 6 shows the bias as a function of stellar
mass limit determined in three ways. The stars and squares show
bg from the HOD fits as given by Equation (13) for fits to the
clustering and clustering plus space density, respectively. The
circles show the large-scale bias (bls) calculated by fitting the
non-linear matter correlation function to the clustering on large
scales. Both bls and bg (fitted to the clustering) show higher
values than bg fitted to the clustering and density. A similar
trend is seen in Figure 7 where we show the predicted mean
density based on the HOD fit to the clustering compared to the
measured density. All but one of the points lie below the one-
to-one relation, although on both plots all are within 2σ of the
expected relation.

Allowing the HOD parameters that were fixed to vary does
not resolve this discrepancy. If we make the satellite slope α
steeper or shallower within reasonable bounds, we find that the
satellite mass threshold M ′

1 adjusts to compensate keeping the
satellite fraction the same and hardly changing the space density.
The same is true for Mcut. Adjusting the softening parameter for
the central cutoff, σlog M , does effect the predicted density for
a given clustering amplitude, in the sense that sharper cutoffs,
smaller values of σlog M , will produce a higher density for the
same clustering. Our chosen value of σlog M is already quite low
and there is some expectation that it should be higher for our
more massive galaxy samples; however, even an unphysical in-
stantaneous transition does not reduce the discrepancy by much.

Therefore, in our analysis we do see some evidence of this
discrepancy over two independent fields, and three redshift
ranges, even though we are using the latest halo mass function
and bias relations from Tinker et al. (2005) and Tinker et al.
(2010a), as well as the most up-to-date implementation of the
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Table 2
HOD and Derived Parameters from Fits to the Clustering Only

z̄ SM Mmin M ′
1 M1 ng bg Fsat Meff

χ2

dof Fit Prob.

1.1 0.7 0.17+0.09
−0.06 1.18+1.37

−0.67 1.32+1.44
−0.69 2.51+2.26

−1.10 2.17+0.13
−0.08 0.22+0.10

−0.07 0.90+0.10
−0.05 0.52 0.860

1.1 1.0 0.17+0.08
−0.06 1.08+1.18

−0.61 1.20+1.31
−0.63 2.49+2.18

−1.05 2.20+0.11
−0.08 0.24+0.11

−0.08 0.95+0.08
−0.05 1.10 0.355

1.1 2.0 0.26+0.13
−0.08 1.69+1.95

−0.81 1.91+2.08
−0.81 1.47+1.01

−0.66 2.37+0.16
−0.10 0.21+0.08

−0.07 1.14+0.17
−0.10 1.78 0.066

1.1 3.0 0.30+0.29
−0.11 1.84+4.92

−1.10 2.09+5.50
−1.18 1.23+1.32

−0.78 2.44+0.30
−0.12 0.21+0.12

−0.11 1.24+0.37
−0.13 0.77 0.643

1.1 5.0 0.38+0.66
−0.16 2.07+12.51

−1.33 2.51+13.34
−1.60 0.92+1.29

−0.72 2.59+0.56
−0.18 0.22+0.14

−0.15 1.45+0.86
−0.21 1.12 0.343

1.5 1.0 0.15+0.11
−0.07 0.96+1.91

−0.70 1.10+1.92
−0.77 2.08+3.78

−1.19 2.60+0.25
−0.16 0.20+0.17

−0.09 0.61+0.14
−0.06 1.14 0.330

1.5 2.0 0.29+0.47
−0.08 2.13+11.19

−1.05 2.51+1.12
−1.19 0.83+2.57

−0.53 2.96+0.62
−0.24 0.15+0.17

−0.08 0.86+0.09
−0.08 1.13 0.339

1.5 3.0 0.38+0.49
−0.28 4.21+17.20

−3.89 4.79+18.12
−4.35 0.54+3.70

−0.40 3.10+0.69
−0.54 0.09+0.27

−0.06 0.95+0.69
−0.33 1.49 0.146

1.5 5.0 0.67+0.43
−0.47 10.23+19.41

−9.35 10.96+19.23
−9.87 0.22+1.35

−0.13 3.55+0.51
−0.75 0.06+0.19

−0.03 1.37+0.59
−0.61 0.86 0.556

1.5 6.0 1.17+0.70
−0.71 44.83+88.99

−38.82 47.86+83.96
−41.55 0.08+0.32

−0.05 4.11+0.63
−0.90 0.02+0.06

−0.01 2.04+0.91
−0.99 0.70 0.708

1.9 3.0 0.17+0.17
−0.08 0.64+2.41

−0.49 0.83+2.48
−0.60 1.36+3.47

−0.97 3.30+0.45
−0.23 0.24+0.22

−0.15 0.55+0.20
−0.08 0.31 0.972

1.9 5.0 0.26+0.33
−0.14 1.11+6.27

−0.92 1.32+7.00
−1.02 0.67+2.50

−0.52 3.61+0.70
−0.37 0.20+0.27

−0.14 0.69+0.40
−0.14 0.76 0.656

1.9 7.1 0.56+0.42
−0.34 8.31+24.07

−7.32 9.12+23.99
−7.92 0.16+0.71

−0.11 4.23+0.71
−0.77 0.05+0.15

−0.03 1.03+0.54
−0.42 0.58 0.811

1.9 10.0 1.17+0.65
−0.92 16.90+35.07

−16.50 17.38+35.10
−16.75 0.04+0.93

−0.02 5.24+0.75
−1.47 0.04+0.36

−0.02 1.84+0.75
−1.03 1.64 0.097

Notes. Mmin and M ′
1 are the fitted HOD parameters. M1, ng, bg, Fsat, and Meff are all derived parameters and are, respectively, the

mass scale at which a halo hosts one satellite on average, the mean galaxy number density, the average linear bias, the satellite
fraction, and the effective halo mass. The stellar mass (SM) is in units of 1010 M�, halo masses are in units of 1013 h−1 M�, and
density has units 10−3 h3 Mpc−3. The errors are 1σ marginalized over the other parameters.

Table 3
HOD and Derived Parameters from Fits to the Clustering and Density

z̄ SM Mmin M ′
1 M1 ng bg Fsat Meff

χ2

dof Fit Prob.

1.1 0.7 0.10+0.01
−0.01 0.42+0.08

−0.08 0.52+0.11
−0.09 5.67+0.92

−0.72 2.08+0.04
−0.03 0.35+0.04

−0.03 0.88+0.05
−0.04 0.69 0.735

1.1 1.0 0.11+0.01
−0.01 0.47+0.11

−0.08 0.58+0.12
−0.10 4.67+0.70

−0.64 2.14+0.03
−0.04 0.35+0.03

−0.04 0.95+0.03
−0.05 1.18 0.295

1.1 2.0 0.17+0.01
−0.02 0.76+0.15

−0.14 0.91+0.18
−0.15 2.82+0.54

−0.34 2.25+0.04
−0.05 0.30+0.04

−0.03 1.06+0.06
−0.07 1.91 0.039

1.1 3.0 0.20+0.03
−0.02 0.85+0.26

−0.14 1.10+0.22
−0.18 2.23+0.27

−0.36 2.35+0.05
−0.06 0.31+0.03

−0.05 1.18+0.08
−0.09 0.82 0.610

1.1 5.0 0.31+0.04
−0.03 1.45+0.44

−0.31 1.74+0.55
−0.29 1.26+0.17

−0.20 2.51+0.07
−0.06 0.26+0.05

−0.04 1.37+0.13
−0.11 1.13 0.337

1.5 1.0 0.11+0.01
−0.01 0.50+0.12

−0.08 0.63+0.13
−0.11 3.46+0.53

−0.47 2.51+0.04
−0.04 0.28+0.03

−0.03 0.58+0.03
−0.03 1.13 0.335

1.5 2.0 0.16+0.01
−0.01 0.62+0.16

−0.12 0.76+0.15
−0.13 2.25+0.28

−0.33 2.71+0.06
−0.05 0.29+0.04

−0.04 0.72+0.05
−0.05 1.17 0.304

1.5 3.0 0.19+0.02
−0.02 1.05+0.28

−0.20 1.20+0.38
−0.20 1.61+0.23

−0.22 2.73+0.05
−0.05 0.21+0.03

−0.03 0.71+0.04
−0.04 1.48 0.140

1.5 5.0 0.27+0.03
−0.02 1.74+0.60

−0.37 2.09+0.42
−0.50 0.92+0.13

−0.13 2.94+0.07
−0.07 0.17+0.03

−0.04 0.85+0.06
−0.07 0.90 0.528

1.5 6.0 0.32+0.03
−0.02 3.04+1.70

−0.78 3.31+1.94
−0.80 0.70+0.08

−0.10 2.99+0.08
−0.07 0.11+0.03

−0.04 0.86+0.08
−0.07 0.85 0.583

1.9 3.0 0.19+0.02
−0.01 0.83+0.22

−0.14 1.00+0.20
−0.17 1.10+0.13

−0.16 3.36+0.07
−0.06 0.21+0.03

−0.03 0.56+0.03
−0.03 0.30 0.980

1.9 5.0 0.26+0.02
−0.01 1.11+0.34

−0.23 1.32+0.42
−0.22 0.67+0.09

−0.10 3.61+0.07
−0.08 0.20+0.04

−0.04 0.69+0.04
−0.04 0.75 0.677

1.9 7.1 0.34+0.03
−0.02 2.70+0.93

−0.63 3.02+0.96
−0.73 0.40+0.05

−0.06 3.76+0.08
−0.07 0.11+0.03

−0.02 0.75+0.05
−0.04 0.61 0.808

1.9 10.0 0.49+0.03
−0.03 2.20+0.51

−0.46 2.75+0.56
−0.46 0.22+0.03

−0.03 4.23+0.07
−0.07 0.16+0.03

−0.02 1.06+0.05
−0.05 1.63 0.091

Notes. Mmin and M ′
1 are the fitted HOD parameters. M1, ng, bg, Fsat, and Meff are all derived parameters and are, respectively, the

mass scale at which a halo hosts one satellite on average, the mean galaxy number density, the average linear bias, the satellite
fraction, and the effective halo mass. The stellar mass (SM) is in units of 1010 M�, halo masses are in units of 1013 h−1 M�, and
density has units 10−3 h3 Mpc−3. The errors are 1σ marginalized over the other fit parameter.

HOD and clustering calculation. However, we should emphasize
that the individual HOD fits that include the space density
are perfectly acceptable fits and are only slightly worse than
the fits to clustering alone. It is still striking that we see that
this systematic offset is apparent for nearly all of our samples
and particularly those with high bias. The simulations that we
conduct to estimate our errors do contain some fields with
clustering as strong as we observed for our most massive
samples at z = 1.5 and 1.9, but these are rare (Figure 12).
Even though cosmic variance could well be playing some part,
it is challenging to explain the whole of this systematic trend as
cosmic variance, particularly when the very similar findings of
Matsuoka et al. (2011) at z � 1 are considered.

One possible explanation is that there may be a deficit of
highly biased halos in our model, as a result of either the halo
mass function or the halo bias relation that we use. We find that
modifying the halo bias relation to make it slightly steeper at
high halo masses resolves this problem, although this is a purely
arbitrary adjustment. There are several different calibrations of
the halo bias relation in the literature (e.g., Sheth & Tormen
1999; Sheth et al. 2001; Hamana et al. 2001; Seljak & Warren
2004; Wetzel et al. 2007; Tinker et al. 2010a), and it is of
course at the high bias end of this relation, where the halos are
rarest, and thus the errors largest that we are potentially seeing
a difference with the observations. We note that the Tinker
et al. (2010a) bias relation that we use here minimizes this
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Figure 6. Galaxy bias as a function of stellar mass limit in the three redshift
intervals. The bias is measured in three ways. The blue points are calculated by
fitting the non-linear dark matter correlation function to the measured correlation
function on scales >0.◦024. The other two bias measurements are determined
from the full HOD fits, the black stars from fits to the clustering, and the red
squares from fits to both the clustering and space density. There is some evidence
of an offset between the bias determined from the clustering and the bias from
the fit to the clustering and space density in the sense that the clustering prefers
higher bias. This is particularly evident at higher redshift and higher stellar mass
limit.

(A color version of this figure is available in the online journal.)

discrepancy compared to other bias relations in the literature.
It is thus possible that further calibration of this relation in
the high bias regime may still be needed, along with more
precise clustering measurements of sufficiently biased galaxy
populations.

The high bias regime is one that has yet to be accurately
probed with clustering measurements. At lower redshifts, even
the most massive galaxies occupy less biased halos. For instance,
we could accurately predict the space density for the 5700
brightest luminous red galaxies (Eisenstein et al. 2001) in the
SDSS DR7 (Abazajian et al. 2009) by fitting our HOD model
to their projected two-point correlation function calculated as in
Wake et al. (2008b). However, even these massive galaxies have
a bias of 3, which falls at the lower end of the bias values implied
by the clustering of our samples where we see the predicted and
observed densities become most discrepant.

Another possibility lies not with the halos themselves but how
the galaxies are placed within the halos. We make the standard
assumption that the satellite galaxies trace an NFW profile
within each halo. If this were not the case, for instance if the
satellites had a broader distribution, it may be possible to place
more satellite galaxies in massive halos, thus increasing the

Figure 7. Predicted mean density based on the HOD fits to the galaxy clustering
as a function of the measured space density for all stellar mass limits in the three
redshift intervals. The vertical solid and dotted error bars are the 1σ and 2σ

errors on the HOD fit density, respectively. The dashed line shows the one-to-
one relation. All but one of the points lie to the right of the one-to-one relation
meaning that the model fit to the clustering implies a lower space density than
is measured.

(A color version of this figure is available in the online journal.)

large-scale clustering amplitude while maintaining the small-
scale amplitude at a level consistent with observations.

It will be very interesting to see if this problem persists with
larger surveys in more fields at these redshifts, such as the
forthcoming NMBS II, or if we have just been very unlucky
with cosmic variance in this instance.

Because of this potential issue we will present the remainder
of our results for both fits to the clustering alone and to fits
combining clustering and space density. The overall trends
are the same but there is a stronger stellar-mass-to-halo-mass
dependence for the fits to the clustering alone. However, we
will focus mainly on the fits that include the space density.
Its inclusion provides a very strong constraint on the HOD,
particularly when the small-scale clustering is as well measured
as it is here. We are comfortable doing this since while there is a
hint of a discrepancy within the model it is not yet large enough
to exclude the fits including the density at a high significance.

6. THE STELLAR-MASS-TO-HALO-MASS
RELATIONSHIP

Figure 8 shows the HODs (for the fits to the clustering and
density), and Figure 9 shows the relationship between the halo
mass scale parameters for central and satellite galaxies, Mmin and
M1, as a function of stellar mass limit for fits to the clustering
(bottom) and the clustering and space density (top). Once again
the clear trend of increasing halo mass with increasing stellar
mass is visible at all redshifts, with the effective halo mass
increasing by factors of 2.2 ± 0.2, 2.5 ± 0.3, and 5.7 ± 0.4 per
decade in stellar mass at redshifts 1.1, 1.5, and 1.9, respectively.
The fits that include the density in Figure 9 show much smaller
errors due to the precision of the density measurement and
its constraining power. They also typically prefer lower values
of the halo mass thresholds (Mmin and M ′

1) as discussed in
Section 5.1.1.

Where there is overlap between the stellar mass bins there
is very little evidence for evolution in the HODs with redshift.
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Figure 8. Mean number of galaxies per halo as a function of halo mass, the HOD, (top), and the mean number of galaxies per halo times the number density of halos
as a function of halo mass (bottom). The total, central, and satellite contributions are shown by the solid, dashed, and dotted lines, respectively. In each redshift range,
the typical halo mass increases as the stellar mass increases.

Only the highest stellar mass bin that is in all three redshift
ranges shows significant evolution in Mmin with redshift, such
that Mmin increases with decreasing redshift.

Zheng et al. (2005) show that for the definition of the
HOD for centrals used here (Equation (7)), the median stellar
mass of central galaxies living in halos of mass Mmin is the
stellar mass limit of the sample. It therefore appears that
the median stellar mass of central galaxies at a given halo
mass remains approximately constant as a function of redshift
between redshifts 1 and 2. Since the halo mass is evolving, such
that a halo at z = 1.9 will have a higher mass at z = 1.1, we
must be seeing growth in the central galaxy mass at close to the
rate required to maintain a constant relationship between central
stellar mass and halo mass over this redshift range. Brown et al.
(2008) see a similar very slow evolution in the halo mass stellar
mass relationship for red galaxies at z < 1 in the NDWFS.
Zheng et al. (2005) do observe a small amount of evolution
in the halo mass luminosity relationship for central galaxies at
z < 1, using samples from the SDSS and DEEP2, although
the use of luminosities measured in different rest-frame bands
complicates the interpretation.

Zehavi et al. (2010) propose a parameterization of the stellar-
mass-to-halo-mass relation for central galaxies consisting of a
power-law component at high halo masses and an exponentially
declining component at low halo masses given by

M∗cen = A

(
Mh

Mt

)αM

exp

(
− Mt

Mh

+ 1

)
, (14)

where A, Mt, and αM are free parameters. αM is the power-law
slope, Mt is the transition halo mass marking the point where
the dominance of the two components switch, and A is the
normalization giving the median stellar mass at Mt. This form

is well fit to the HOD measurements at z ∼ 0.1 where there is
a clear shoulder in the stellar-mass-to-halo-mass relationship at
around 1012 h−1 M� (Zehavi et al. 2010).

We fit this relation to the data shown in Figure 9 and find
best-fit values of A = 2.4+0.7

−1.5 × 1010 M�, αM = 0.74+0.38
−0.20,

and Mt = 172+45
−70 × 1010 M� shown as the solid line. Due to

the limited range in stellar mass that our samples cover this
fit is quite poorly constrained, although we might expect to be
covering the transition region. We find that the best-fit transition
mass at 1 < z < 2 is a factor of four higher than that found at
z ∼ 0.1 in the SDSS (Zehavi et al. 2010).

6.1. The Halo Occupation of Satellite Galaxies

Figure 9 shows both the central mass scale Mmin and the
satellite mass scale M1 as a function of stellar mass, where Mmin
is the halo mass at which a halo hosts on average 0.5 central
galaxies and M1 is the halo mass hosting on average 1 satellite
galaxy. The dashed line in Figure 9 shows the best-fit relation to
Mmin scaled by a factor of six, which appears to fit the M1 stellar
mass relation pretty well. This offset implies that a halo hosting
two galaxies, one central and one satellite, is typically more than
six times as massive as a halo hosting just one central galaxy.
Halos with masses in between Mmin and M1 will typically host
a single central galaxy with an above average stellar mass.

Observations from the SDSS at z ∼ 0.1 find M1 � 17Mmin
(Zheng et al. 2007; Zehavi et al. 2010), almost three times the
difference we observe at z > 1. There are two reasons for this:
first, our samples have higher stellar mass limits than the typical
samples from the SDSS, and second, we expect there to be
evolution with redshift. The stellar mass limit is important as
the M1/Mmin ratio is seen to become rapidly smaller for higher
stellar mass (luminosity) limits (e.g., see Figure 12 of Zehavi
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Figure 9. Relationship between stellar mass and halo mass for the central and
satellite galaxies from the HOD fits to the clustering (bottom) and the clustering
and density (top). The solid lines in both panels show the best-fit stellar mass
Mmin relation of the form given in Equation (14) to the clustering and density
HOD fits. The dashed lines show the Mmin relation scaled up by a factor of six.
Higher mass thresholds are typically preferred by the fits to just the clustering
than by the fits to both the clustering and density. Both the satellite and central
halo mass thresholds increase as the stellar mass limit increases.

(A color version of this figure is available in the online journal.)

et al. 2010). This dependence on halo mass is thought to be
caused by the fact that the more massive the halo the later it is
expected to form at any given epoch, so that there is less time
for satellites to merge on to the central galaxy in more massive
halos.

Even though the samples in Zehavi et al. (2010) are luminosity
limited, rather than mass limited, and at a different redshift we
can make a reasonably good comparison by matching the space
densities. In doing this we are assuming that the N most massive
galaxies at one redshift correspond to the N most massive at
another. At overlapping space densities the M1/Mmin ratio varies
from 17 to 6, with a typical value of �10 at z ∼ 0.1, and is much
more consistent with our values for the lowest space densities
(highest masses). We do not see much of a dependence of this
ratio on stellar mass within our data, which could simply be the
result of the relatively small stellar mass range of our samples or
it could show a genuine reduction in the stellar mass dependence
at high redshift.

The expected redshift dependence has a similar origin as the
stellar mass dependence, in that for any given halo mass the time
with which satellites have to merge with the central galaxy is
less at earlier epochs. Kravtsov et al. (2004) use high-resolution
dissipationless N-body simulations to investigate the HOD and
predict that M1/Mmin should have 2/3 of its z = 0 value by z =
1 and 1/3 by z = 3. This prediction is roughly consistent with
the reduction we observe compared to z ∼ 0.1.

Figure 10 shows the relationship between satellite fraction
and stellar mass limit for the HOD fits to the clustering (bottom)

Figure 10. Relationship between the fraction of galaxies above a stellar mass
limit that are satellites in halos (rather than centrals) and the stellar mass limit
determined from the HOD fits to the clustering (bottom) and the clustering
and density (top). In both panels, the satellite fraction appears to reduce as the
stellar mass increases. Including the density in the fit results in higher satellite
fractions.

(A color version of this figure is available in the online journal.)

and the clustering and density combined (top). The HOD fit
that includes the density shows higher satellite fractions than
the fits to the clustering alone, although for most samples the
significance is marginal. The reason for this difference is simple,
for a given space density HODs with high satellite fractions are
preferentially placing galaxies as satellites in high mass halos,
which are more clustered, rather than centrals in lower mass
halos, which are less clustered. For our samples, this allows
the clustering to remain high, even though the space density is
large. Of course there is a limit to how many satellite galaxies
are allowed, determined by the amplitude of the small-scale
clustering.

Both fits show a general trend of decreasing satellite fraction
with increasing stellar mass limit, a trend which has previously
been seen in clustering measurements, group catalogs, and from
lensing at z < 1 (e.g., Zehavi et al. 2005; Zheng et al. 2007;
Mandelbaum et al. 2006; Yang et al. 2008). This trend simply
results from the shape of the halo mass function; at high halo
masses, the halo mass function has an exponential decline, so for
a fixed ratio of Mmin-to-M1 halos with mass M1 are increasingly
rare relative to halos of mass Mmin as these mass scales increase.
At lower halo masses, the mass function flattens and the rate
at which the satellite fraction changes decreases as the stellar
mass limit decreases. This flattening in the satellite fraction is
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Figure 11. Top panel: the relationship between the ratio of stellar mass to halo
mass and halo mass for central galaxies determined from the HOD fits to the
clustering and density. This ratio is proportional to the efficiency with which
baryons have been converted to stars. The solid line shows the best-fit relation
of the form given in Equation (15) determined from the fit to the stellar-mass-to-
Mmin relation shown in Figure 8. The dashed lines show the 1σ confidence region
on this fit. The star formation efficiency increases as the halo mass increases,
before plateauing at high halo mass. Middle and bottom panels: comparisons to
similar measurements in the literature at z = 0.1, 1, 1.5, and 2 from Zheng et al.
(2007), Moster et al. (2010) (middle panel), and Behroozi et al. (2010) (bottom
panel). We have adjusted our measurements in these panels to match the stellar
population modeling assumptions used in the literature determinations (see the
text for details). The peak in the relation, which corresponds to the peak in
efficiency in the conversion of baryons to stars in the central galaxy, has shifted
to higher halo masses at higher redshift.

(A color version of this figure is available in the online journal.)

observed at z ∼ 0.1 in the SDSS (Zheng et al. 2007; Yang et al.
2008; Zehavi et al. 2010) and there is evidence of this flattening
in the measurements presented here for stellar mass limits less
than 2 × 1010 M�.

6.2. Star Formation Efficiency in Central Galaxies

A more physically intuitive way to view the stellar-mass-to-
halo-mass relation for central galaxies is to consider how the
ratio of the central galaxy stellar mass to halo mass depends on
halo mass. Assuming that the baryon fraction is constant with
halo mass then this ratio gives the efficiency with which baryons
have been converted to stellar mass in the central galaxy. The
top panel of Figure 11 shows this ratio as a function of halo mass
for our three samples along with the analytic relation derived
from Equation (14) (Zehavi et al. 2010):

Mh

M∗cen
= Mt

A

(
Mh

Mt

)1−αM

exp

(
Mt

Mh

− 1

)
(15)

with A, Mt, and αM the best-fit parameters from before. Here,
A/Mt is the halo-mass-to-stellar-mass ratio at Mt. This an-
alytic relation is shown as the solid line in Figure 11 with
the 1σ confidence region shown by the dashed lines. We see
a steady rise in the star formation efficiency as halo mass
increases, which plateaus at high halo masses and shows
a hint of a turning over in the highest mass bin. We see
little evidence of redshift evolution within our sample, al-
though the turnover may be occurring slightly early at lower
redshift.

In the middle and bottom panels of Figure 11, we compare
our measurements to other measurements from the literature at
z = 0.1, z = 1, z = 1.5, and z = 2. The open crosses and circles
in the middle panel are from Zheng et al. (2007) and are based on
HOD fits to clustering measurements in the SDSS and DEEP2
surveys. The blue and cyan shaded area in the middle panel
show the 1σ confidence interval of this relation derived by sub-
halo abundance matching (SHAM) to the SDSS stellar mass
function at z = 0.1 and stellar mass function measurements
from Fontana et al. (2006) in the Chandra Deep Field South at
z = 1.5 from Moster et al. (2010).

The bottom panel again shows further SHAM measurements
from Behroozi et al. (2010) who again make use of the SDSS
stellar mass function at z = 0.1, but use more recent stellar mass
functions from Pérez-González et al. (2008) and Marchesini
et al. (2009) at higher redshift. The solid errors on these points
show the random errors on the measurements with the dotted
errors showing the systematic errors.

All of the literature measurements use Bruzual & Charlot
(2003) stellar population synthesis models rather than the
Maraston (2005) models that we have used. We have thus
applied a correction to our stellar masses in the middle and
bottom panels to account for this difference. Behroozi et al.
(2010) also assume a dust model from Blanton & Roweis (2007)
rather than Calzetti et al. (2000) and so we further adjust our
results in the bottom panel to reflect this.

All three SDSS relations show a characteristic maximum star
formation efficiency at a halo mass of around 6 × 1011 h−1 M�
with a steep decline either side, corresponding to a fall in
efficiency at higher or lower halo mass. This peak efficiency
has also been seen in several other studies at low redshift using
the HOD, the Conditional Luminosity Function, group catalogs,
SHAM, and weak lensing (Yang et al. 2003; Eke et al. 2005;
Tinker et al. 2005; Vale & Ostriker 2006; Mandelbaum et al.
2006; Guo et al. 2010).

When compared with these z � 0 results our measurements
show that the halo-mass-to-stellar-mass versus halo mass rela-
tion has changed significantly with redshift, with the peak in
the star formation efficiency moving to higher halo masses at
higher redshift. It is unfortunate that the area of our survey does
not permit us to probe to slightly higher stellar masses, and thus
halo masses, as it is not clear that we are definitely seeing the
expected downturn in M∗/Mh at high halo masses. However,
there is a definite flattening in all three redshift ranges and some
evidence of a downturn in the highest mass bin in the z̄ = 1.9
sample. This turnover becomes more apparent in the bottom
panel after the corrections to stellar population model and dust
law are applied.

The literature measurements also show a shift in the peak
efficiency to higher halo masses at higher redshift. These are
broadly consistent with our measurements, although our peak
efficiency is at somewhat higher halo masses and the rate of
downturn at low halo masses appears to be faster.
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It is not surprising that there is not an exact agreement with
Zheng et al. (2007) since they use luminosity limited samples,
limited in the rest B band at z ∼ 1, resulting in a color-dependent
selection that is not stellar mass limited. Cosmic variance caused
by the small field used for the stellar mass function measurement
in Moster et al. (2010), along with small differences in the stellar
mass determinations and cosmology could easily explain the
difference between our relations.

Our measurement at z = 1 lies just about within the system-
atic error of Behroozi et al. (2010); however, we have adjusted
our stellar masses to match their model, and uncertainties in
the stellar population synthesis model masses are the dominant
factor in their systematic error determination. We assume the
same cosmology and while there are slight differences in our
halo mass definitions one would expect better agreement, partic-
ularly as the NMBS data produce stellar mass functions which
very closely match those used by Behroozi et al. (2010). The
largest difference is for the lowest stellar mass limited samples
where our best-fit halo masses would need to be about 30%
lower than Behroozi et al. (2010). The cause of this difference
appears to be the fact that we are fitting the clustering as well
as the space density of galaxies, whereas the SHAM just uses
the space density of galaxies. For a given stellar mass limit we
could easily reduce the value of Mmin in the halo model (which
gives the median central stellar mass) if we made M ′

1 higher,
thus reducing the satellite fraction. However, this would reduce
the clustering amplitude on both small and large scales and be
incompatible with our clustering measurements. At lower stel-
lar masses, the SHAM model is assigning fewer galaxies to be
satellites and more to be centrals than appears to be compatible
with our clustering measurements. This illustrates the impor-
tance of testing the assumptions that go into the SHAM model
with additional observations such as the clustering.

Returning to the redshift evolution of the star formation
efficiency the shift in the overall normalization of this relation
just reflects the continued conversion of baryons into stars. If
we assume a universal baryon fraction of 16.9% then we can
convert the halo mass to stellar mass ratio to the fraction of
baryons converted to stars in the central galaxy. At z ∼ 1.5 this
stellar baryonic fraction peaks at about 10%, whereas at z = 0
it peaks at 25%. At high halo masses, the high-redshift and low-
redshift relations approach each other. This means that central
galaxies in high mass halos are growing much more slowly in
stellar mass than their host halos are growing in dark matter
mass. It does not mean that the total fraction of baryons in stars
has hardly changed, just that these stars are not being effectively
added to the central galaxy and may be in either satellites or in
the diffuse intra-halo background. The opposite seems to be
the case at lower halo masses where there appears to be an
increasing rate of stellar mass build up for centrals, compared to
the rate of growth of their parent halos. This is in a sense another
manifestation of the “downsizing” paradigm, but for halos. The
most massive halos are more efficient in converting baryons to
stars at high redshift and are becoming increasingly inefficient
in doing so as time goes on compared to lower mass halos.

7. SUMMARY AND CONCLUSIONS

We present here a detailed analysis of the clustering of
galaxies as a function of their stellar mass at 1 < z < 2
using data from the NMBS. The precise nature of the NMBS
photometric redshifts allows us to define samples that are
very close to being volume-limited with accurate stellar mass
estimates. We find the following.

1. In all three redshift slices, we see a significant dependence
of the clustering amplitude on the stellar mass limit of
the sample, both when comparing the two-point angular
correlation functions directly, or when considering the
amplitude of a power-law fit to the correlation function
measurements. This shows that the strong stellar mass
dependent clustering seen at z � 1 persists up to z ∼ 2.

2. We fit halo models to our measurements using the form of
the HOD from Zheng et al. (2005), fitting for the central
and satellite mass thresholds Mmin and M ′

1, respectively.
We find that both Mmin and M ′

1 show a significant increase
with increasing stellar mass limit, confirming that at strong
stellar-mass-to-halo-mass relationship is in place at 1 <
z < 2.

3. For the HOD definition that we use, the stellar mass limit
of our samples corresponds to the median stellar mass
of central galaxies hosted by halos of mass Mmin. We
see little evidence for any evolution in this relationship
between central stellar mass and halo mass within our
sampled redshift range, although there is clear evidence
that it evolves from the redshift zero relation.

4. We determine the efficiency with which baryons are con-
verted into stars in central galaxies as a function of halo
mass by calculating the stellar-mass-to-halo-mass ratio.
We see a peak star formation efficiency in halos of mass
∼3×1012 h−1 M� with a clear decrease in efficiency at low
halo masses. There is some weak evidence of a downturn
at high halo masses, but this conclusion is limited since the
size of our survey prevents us from probing stellar mass
limits greater than 1011 M� due to the small number of
galaxies with these high masses. Measurements at z � 0
show a peak efficiency in halos of ∼7 × 1011 h−1 M�, pro-
viding clear evidence of a shift in peak efficiency to higher
halo masses at higher redshift. This halo “downsizing” is a
similar phenomenon as the galaxy “downsizing” seen as a
function of galaxy mass.

5. We find evidence that the fraction of satellite galaxies
increases as the stellar mass limit decreases in a similar
manner to that seen at z � 0. The ratio between the
central and satellite mass thresholds Mmin and M ′

1 remains
approximately constant over the relatively narrow range in
stellar mass that we probe. The ratio does appear to have
decreased compared with the z � 0 values, consistent with
the basic expectations of N-body simulations.

6. We show some evidence that the halo model is unable to
reconcile both the observed clustering and space density
of highly biased galaxies at z > 1. The significance of
this is marginal, and it is possible that we could have been
unlucky with cosmic variance; but taken with other similar
recent observations (Matsuoka et al. 2011) it may imply that
there is an incompleteness in the halo model, for instance,
the halo bias relation may need to be adjusted in the high
bias regime or galaxies may not be distributed within halos
following an NFW profile.

There remains much scope for furthering this work in the near
future. The forthcoming NMBS II, which will cover 10 times
the area as NMBS in five fields, but to shallower flux limits,
will enable us to extend this work to higher stellar masses. This
should allow the downturn in the stellar-mass-to-halo-mass ratio
halo mass relation to be precisely pin-pointed as well as resolve
whether there is an issue with the halo model at high redshift
and high bias.
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The ultimate goal of this work will be to use the halo model
framework to place constraints on the evolution of the galaxy
population, by combining these measurements with those at
lower redshifts as has been done by, e.g., Zheng et al. (2007),
White et al. (2007), Wake et al. (2008b), and Brown et al. (2008).
We have already begun this process and in a forthcoming paper
we will combine the measurements presented here at 1 < z < 2
with measurements of clustering as a function of stellar mass
in the SDSS at z = 0.1, where we have defined the stellar mass
in a consistent manner (D. A. Wake et al. 2011, in preparation).
This will allow us to see if the stellar-mass-halo-mass relation
remains constant over this range and, by combining its evolution
with the evolution of the halo mass, determine how central
galaxies have grown as a function of cosmic time over the last
10 Gyr.
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APPENDIX A

ESTIMATING ERRORS ON THE TWO-POINT
CORRELATION FUNCTION

Making an accurate estimation of the errors on a correlation
function measurement is particularly challenging, and there are
several established methods in the literature, all of which have
advantages and disadvantages. Since the individual data points
in any correlation function are highly correlated, particularly
on large scales, it is vital to estimate the full covariance when
determining the errors. This immediately rules out the use of
Poisson errors, which despite these problems are still often used.

This leaves two broad classes of method: internal estimators
such as bootstrap or jackknife resampling techniques that make
use of the data themselves, and mock catalogs, whereby multiple
fake data sets are created and compared. The advantage of the
internal estimators is that they include all of the real correlations
in the data, something which mock catalogs may not. The
disadvantage is that they are of limited size and so can produce
noisy estimates of the covariance matrix and may also show
dependence on the numbers and size of the sub-regions used
when re-sampling (Norberg et al. 2009).

We made an initial attempt to use the jackknife resampling
technique to estimate the covariance on our measurements. We
define multiple sub-regions with equal area and then recalculate
the correlation function removing one subregion at a time to
calculate the covariance. We perform this procedure multiple
times splitting our data in to 9, 25, 49, and 100 sub-regions.
Comparing the covariances we find a strong dependence of the
magnitude of the errors on the number of sub-regions we use in
the jackknife calculation, particularly on large scales, an effect

reported previously in Norberg et al. (2009; but see also Zehavi
et al. 2005). The strong large-scale dependence is not surprising
since the size of our sub-regions is comparable or smaller than
the scale at which we wish to estimate the error. However, we
still see a systematic correlation at smaller scales, such that the
errors increase as the number of sub-samples increases. For this
reason we believe that mock catalogs provide a significantly
better approach for our analysis.

We choose to use the Millennium simulation (Springel et al.
2005) to generate our mock surveys, which is almost ideal for
our purposes. For each redshift sample we download a halo
catalog with halo masses >7 × 1010 h−1 M� at the output with
the redshift closest to the mean of our sample, redshifts 1.08,
1.50, and 1.91, respectively.

We then make a HOD fit to the correlation function and
density of each of our samples using the method described in
Section 5. We make use of the covariance matrices generated
using the jackknife method with nine sub-samples. There is
considerable noise in these covariance matrices due to the small
number of jackknives and we mitigate this by restricting the fit to
use just 95% of the covariance based on a principle component
analysis following the techniques proposed by Porciani &
Norberg (2006) and Norberg et al. (2009). This is more than
adequate to generate the mocks, where we are just interested in
the best-fitting HOD and not concerned with confidences, etc.

We fit to both the density and clustering as it is important that
we get the best match to both in the mocks. If we just fit to the
clustering, something we tested, we see that the density in the
mocks is much lower than in our samples, particularly at high
stellar masses and at z̄ = 1.5. This leads to a substantial over-
estimation of the errors simply as a result of increased shot noise.

The Millennium simulation has σ8 = 0.9, whereas the
currently favored value, and the one we assume, is 0.8. When
fitting the halo model in this instance we therefore use σ8 = 0.9.
Despite this difference the resulting mocks are able to reproduce
the clustering and space density of our samples with the same
accuracy as the σ8 = 0.8 HOD fits and so we are happy to use
these to estimate our errors.

The dark matter halo catalogs extracted from the Millennium
simulation are then populated following the best-fitting HOD
for each sample, placing the central galaxies at the center
of the halos and distributing the satellites following an NFW
profile. The whole Millennium box is then split up into multiple
copies of our full survey geometry. The Millennium box size of
500 h−1 Mpc is not quite large enough to accommodate the full
size of our samples in the redshift direction and so we wrap the
box in order to accomplish this. We are able to generate 170,
128, and 98 realizations of a single field at redshifts 1.1, 1.5,
and 1.9, respectively. When generating the mocks for both fields
combined we ensure that each pair of fields is separated by at
least 100 h−1 Mpc so they are not correlated.

The angular correlation function is then calculated for the
full box mock, and in each of the survey mocks. The covariance
for each stellar mass limited sample is determined from the
multiple survey mocks. We make a direct estimate of the
integral constraint for the mock surveys by comparing the mean
correlation function of the survey mocks to the correlation
function of the full box mock.

Figure 12 shows the results of this process for the lowest and
highest stellar mass limited samples at z = 1.5 with both fields
combined. The blue points on each plot show the correlation
function measurement for the NMBS sample, the black squares
show the correlation function from the full box mock, and the red
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Figure 12. Measured and mock angular correlation functions for the most and least massive galaxies in the z̄ = 1.5 sample. The blue points show the measurements
from the NMBS, the black squares the full box mock, the red stars the mean of the individual survey mocks, and the cyan lines the individual survey mocks. All have
been corrected for the integral constraint where appropriate.

(A color version of this figure is available in the online journal.)

stars indicate the mean of the individual survey mocks corrected
by the integral constraint. The cyan lines show the individual
correlation function measurements from each survey mock. In
all cases, the mean survey mocks agree with the full box mock
as expected. As discussed in Section 5.1.1 for the high stellar
mass sample the clustering measurement is higher than that
determined from the mock, although there are some individual
survey mocks that do show this level of clustering.

The errors estimated in this way treat each stellar mass limited
sample as if it were independent of the others in our survey. As
such we estimate the error one would expect if the correlation
function was determined at a given stellar mass limit in a given
redshift interval on any piece of sky. When comparing our stellar
mass limited samples with each other they are not independent as
they are measured in the same volume each time (the same piece
of sky). It is almost certainly the case that if in one particular
volume the clustering amplitude of galaxies more massive than
1 × 1010 M� is higher than average the clustering amplitude of
galaxies more massive than 5×1010 M� will also be higher. Our
error estimates ignore this and we treat our measurements as if
they had been made in independent volumes when testing for
stellar mass dependent clustering. In this case, we are most likely
overestimating the error on any mass-dependent clustering and
underestimating its significance. As such we have estimated the
error in a most conservative fashion and we still find significant
stellar mass dependent clustering. We therefore choose not
to pursue the much more complex simulations that would be
required to fully model this effect. Of course our error estimates
are perfectly correct if one wished to compare our measurements
with similar ones estimated from another region of sky.

APPENDIX B

HALO MODEL

Here we present a more detailed overview of our halo model
calculation.

The fraction of halos of mass M which host centrals is
modeled as

〈Nc|M〉 = 1

2

[
1 + erf

(
log M − log Mmin

σlog M

)]
, (B1)

where erf is the error function, M is the halo mass, and Mmin and
σlog M parameterize the HOD. Only halos which host a central
may host satellites. In such halos, the number of satellites is
drawn from a Poisson distribution with mean

〈Ns |M〉 =
(

M − M0

M ′
1

)α

. (B2)

Thus, the mean number of galaxies in halos of mass M is

〈N |M〉 = 〈Nc|M〉[1 + 〈Ns |M〉], (B3)

and the predicted number density of galaxies is

ng =
∫

dM n(M) 〈N |M〉, (B4)

where n(M) is the halo mass function, for which we use the
latest parameterization given by Tinker et al. (2010a).

We further assume that the satellite galaxies in a halo trace an
NFW profile (Navarro et al. 1996) around the halo center, and
that the halos are biased tracers of the dark matter distribution.
The halo bias (b(M)) depends on halo mass in a way that can
be estimated directly from the halo mass function (Sheth &
Tormen 1999), and we use the most up-to-date parameterization
of Tinker et al. (2010a). With these assumptions the halo model
for ξ (r) is completely specified (e.g., Cooray & Sheth 2002).
We then calculate w(θ ) from ξ (r) using Equation (3).

In Wake et al. (2008a, 2008b), we used the linear theory
power spectrum (PLin(k)) throughout the calculation, whereas
we now use the non-linear power spectrum when calculating the
two-halo term. We also apply the scale-dependent bias and halo
exclusion.

In addition to ξ (r), we are interested in the satellite fraction,

Fsat =
∫

dM n(M) 〈Nc|M〉 〈Ns |M〉/ng, (B5)

and two measures of the typical masses of galaxy host halos: an
effective halo mass

Meff =
∫

dM M n(M) 〈N |M〉/ng (B6)
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and the average linear bias factor

bg =
∫

dM n(M) b(M) 〈N |M〉/ng, (B7)

where b(M) is the halo bias.
Our notation is intended to make explicit the fact that the

mean number density of central–satellite pairs from such halos is
n(M) 〈Nc|M〉 〈Ns |M〉, and the mean number density of distinct
satellite–satellite pairs is n(M) 〈Nc|M〉 〈Ns |M〉2/2 (because we
are assuming the satellite counts are Poisson).

Our model for the real-space two-point function is

ξ (r) = 1 + ξcs(r) + 1 + ξss(r) + ξ2h(r), (B8)

where

1 + ξcs(r) =
∫

dM
n(M)〈Nc|M〉

ng

〈Ns |M〉 ρ(r|M)

ngM
(B9)

1 + ξss(r) =
∫

dM
n(M)〈Nc|M〉

ng

〈Ns |M〉2

2

λ(r|M)

ngM2
(B10)

and

ξ2h(r) =
∫

dk

k

k3P2h(k)

2π2

sin kr

kr
(B11)

with
P2h(k, r) = bg(k, r)2 P (k), (B12)

where

bg(k, r) =
∫ Mlim(r)

0
dM

n(M)

n′
g

b(M, r) 〈Nc|M〉

× [1 + 〈Ns |M〉u(k|M)]. (B13)

In the expressions above, ρ(r|M) is the density profile of halos
of mass M, λ(r|M) denotes the convolution of two such profiles,
u(k|M) is the Fourier transform of ρ(r|M)/M , and P (k) denotes
the non-linear theory power spectrum at the redshift of interest.
The scale-dependent bias (b(M, r)) is calculated following
Tinker et al. (2005) as

b2(M, r) = b2(M)
[1 + 1.17ξm(r)]1.49

[1 + 0.69ξm(r)]2.09
, (B14)

where ξm(r) is the non-linear real-space matter two-point
correlation function. The upper limit to the integral, Mlim(r),
as well as the use of the restricted number density, n′

g in
Equation (B13), takes into account the effect of halo exclusion,
with Mlim(r) determined following the method of Tinker et al.
(2005) and

n′
g =

∫ Mlim(r)

0
dM n(M) 〈N |M〉. (B15)

All these quantities, along with the mass function n(M) and
bias factor b(M, r), are to be evaluated at the redshift of interest.
We have already specified how, for a given halo mass, the virial
radius depends on redshift; the NFW halo density profile is
also specified by its concentration, for which we assume the
relation of Bullock et al. (2001). All this, in the right-hand side
of Equation (3), gives the halo model calculation of w(θ ).
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