339 research outputs found

    Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish

    Get PDF
    International audienceHeightened concern over endocrine-disrupting chemicals is driven by the hypothesis that they could reduce reproductive success and affect wildlife populations, but there is little evidence for this expectation. The pharmaceutical ethynylestradiol (EE(2)) is a potent endocrine modulator and is present in the aquatic environment at biologically active concentrations. To investigate impacts on reproductive success and mechanisms of disruption, we exposed breeding populations (n = 12) of zebrafish (Danio rerio) over multiple generations to environmentally relevant concentrations of EE(2). Life-long exposure to 5 ng/L EE(2) in the F, generation caused a 56% reduction in fecundity and complete population failure with no fertilization. Conversely, the same level of exposure for up to 40 days in mature adults in the parental F(0) generation had no impact on reproductive success. Infertility in the F, generation after life-long exposure to 5 ng/L EE(2) was due to disturbed sexual differentiation, with males having no functional testes and either undifferentiated or intersex gonads. These F, males also showed a reduced vitellogenic response when compared with F(0) males, indicating an acclimation to EE(2) exposure. Deputation studies found only a partial recovery in reproductive capacity after 5 months. Significantly, even though the F(0) males lacked functional testes, they showed male-pattern reproductive behavior, inducing the spawning act and competing with healthy males to disrupt fertilization. Endocrine disruption is therefore likely to affect breeding dynamics and reproductive success in group-spawning fish. Our findings raise major concerns about the population-level impacts for wildlife of long-term exposure to low concentrations of estrogenic endocrine disruptors

    Digital Quantum Simulation with Rydberg Atoms

    Full text link
    We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involving many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaev's toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral Particles" of "Quantum Information Processing

    Geometry of GL_n(C) on infinity: complete collineations, projective compactifications, and universal boundary

    Full text link
    Consider a finite dimensional (generally reducible) polynomial representation \rho of GL_n. A projective compactification of GL_n is the closure of \rho(GL_n) in the space of all operators defined up to a factor (this class of spaces can be characterized as equivariant projective normal compactifications of GL_n). We give an expicit description for all projective compactifications. We also construct explicitly (in elementary geometrical terms) a universal object for all projective compactifications of GL_n.Comment: 24 pages, corrected varian

    Improved Resolution Haplogroup G Phylogeny in the Y Chromosome, Revealed by a Set of Newly Characterized SNPs

    Get PDF
    Background: Y-SNP haplogroup G (hgG), defined by Y-SNP marker M201, is relatively uncommon in the United States general population, with only 8 additional sub-markers characterized. Many of the previously described eight sub-markers are either very rare (2–4%) or do not distinguish between major populations within this hg. In fact, prior to the current study, only 2 % of our reference Caucasian population belonged to hgG and all of these individuals were in sub-haplogroup G2a, defined by P15. Additional Y-SNPs are needed in order to differentiate between individuals within this haplogroup. Principal Findings: In this work we have investigated whether we could differentiate between a population of 63 hgG individuals using previously uncharacterized Y-SNPs. We have designed assays to test these individuals using all known hgG SNPs (n = 9) and an additional 16 unreported/undefined Y-SNPS. Using a combination of DNA sequence and genetic genealogy databases, we have uncovered a total of 15 new hgG SNPs that had been previously reported but not phylogenetically characterized. Ten of the new Y-SNPs are phylogenetically equivalent to M201, one is equivalent to P15 and, interestingly, four create new, separate haplogroups. Three of the latter are more common than many of the previously defined Y-SNPs. Y-STR data from these individuals show that DYS385*12 is present in (70%) of G2a3b1-U13 individuals while only 4 % of non-G2a3b1-U13 individuals posses the DYS385*12 allele. Conclusions: This study uncovered several previously undefined Y-SNPs by using data from several database sources. Th

    Acute infarct of the corpus callosum presenting as alien hand syndrome: evidence of diffusion weighted imaging and magnetic resonance angiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infarcts of the corpus callosum are rare and have not been well documented previously. As for a variety of signs and symptoms presented, alien hand syndrome (AHS) can be easily overlooked.</p> <p>Case presentation</p> <p>In this report, we present a patient with a mixed types of AHS coexistence secondary to the corpus callosum infarction, including a motor type of AHS by intermanual conflict (callosal type AHS) and a sensory type of AHS by alien hand and left hemianesthesia (posterior AHS).</p> <p>Conclusions</p> <p>Our case may contribute to the early recognition of AHS and to explore the abnormal neural mechanism of AHS. To our knowledge, rare reports have ever documented such mixed AHS coexisting secondary to the callosal lesion, based on advanced neuroimaging methods as in our case.</p

    The effect of oxygen stoichiometry on electrical transport and magnetic properties of La0.9Te0.1MnOy

    Full text link
    The effect of the variation of oxygen content on structural, magnetic and transport properties in the electron-doped manganites La0.9Te0.1MnOy has been investigated. All samples show a rhombohedral structure with the space group . The Curie temperature decreases and the paramagnetic-ferromagnetic (PM-FM) transition becomes broader with the reduction of oxygen content. The resistivity of the annealed samples increases slightly with a small reduction of oxygen content. Further reduction in the oxygen content, the resistivity maximum increases by six orders of magnitude compared with that of the as-prepared sample, and the r(T) curves of samples with y = 2.86 and y = 2.83 display the semiconducting behavior () in both high-temperature PM phase and low-temperature FM phase, which is considered to be related to the appearance of superexchange ferromagnetism (SFM) and the localization of carriers. The results are discussed in terms of the combined effects of the increase in the Mn2+/(Mn2++Mn3+) ratio, the partial destruction of double exchange (DE) interaction, and the localization of carriers due to the introduction of oxygen vacancies in the Mn-O-Mn network.Comment: 20 pages, 8 figure

    Probing the structural hierarchy and energy landscape of an RNA T-loop hairpin

    Get PDF
    The T-loop motif is an important recurrent RNA structural building block consisting of a U-turn sub-motif and a UA trans Watson–Crick/Hoogsteen base pair. In the presence of a hairpin stem, the UA non-canonical base pair becomes part of the UA-handle motif. To probe the hierarchical organization and energy landscape of the T-loop, we performed replica exchange molecular dynamics (REMD) simulations of the T-loop in isolation and as part of a hairpin. Our simulations reveal that the isolated T-loop adopts coil conformers stabilized by base stacking. The T-loop hairpin shows a highly rugged energy landscape featuring multiple local minima with a transition state for folding consisting of partially zipped states. The U-turn displays a high conformational flexibility both when the T-loop is in isolation and as part of a hairpin. On the other hand, the stability of the UA non-canonical base pair is enhanced in the presence of the UA-handle. This motif is apparently a key component for stabilizing the T-loop, while the U-turn is mostly involved in long-range interaction. Our results suggest that the stability and folding of small RNA motifs are highly dependent on local context

    Syndecan-1 regulates the biological activities of interleukin-34

    Get PDF
    IL-34 is a challenging cytokine sharing functional similarities with M-CSF through M-CSFR activation. It also plays a singular role that has recently been explained in the brain, through a binding to the receptor protein tyrosine phosphatase RPTPÎČ/ζ. The aim of this paper was to look for alternative binding of IL-34 on other cell types. Myeloid cells (HL-60, U-937, THP-1) were used as cells intrinsically expressing M-CSFR, and M-CSFR was expressed in TF-1 and HEK293 cells. IL-34 binding was studied by Scatchard and binding inhibition assays, using 125I-radiolabelled cytokines, and surface plasmon resonance. M-CSFR activation was analysed by Western blot after glycosaminoglycans abrasion, syndecan-1 overexpression or repression and addition of a blocking anti-syndecan antibody. M-CSF and IL-34 induced different patterns of M-CSFR phosphorylations, suggesting the existence of alternative binding for IL-34. Binding experiments and chondroitinase treatment confirmed low affinity binding to chondroitin sulphate chains on cells lacking both M-CSFR and RPTPÎČ/ζ. Amongst the proteoglycans with chondroitin sulphate chains, syndecan-1 was able to modulate the IL-34-induced M-CSFR signalling pathways. Interestingly, IL-34 induced the migration of syndecan-1 expressing cells. Indeed, IL-34 significantly increased the migration of THP-1 and M2a macrophages that was inhibited by addition of a blocking anti-syndecan-1 antibody. This paper provides evidence of alternative binding of IL-34 to chondroitin sulphates and syndecan-1 at the cell surface that modulates M-CSFR activation. In addition, IL-34-induced myeloid cell migration is a syndecan-1 dependent mechanism

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
    • 

    corecore