158 research outputs found
To wet or not to wet: that is the question
Wetting transitions have been predicted and observed to occur for various
combinations of fluids and surfaces. This paper describes the origin of such
transitions, for liquid films on solid surfaces, in terms of the gas-surface
interaction potentials V(r), which depend on the specific adsorption system.
The transitions of light inert gases and H2 molecules on alkali metal surfaces
have been explored extensively and are relatively well understood in terms of
the least attractive adsorption interactions in nature. Much less thoroughly
investigated are wetting transitions of Hg, water, heavy inert gases and other
molecular films. The basic idea is that nonwetting occurs, for energetic
reasons, if the adsorption potential's well-depth D is smaller than, or
comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At
the wetting temperature, Tw, the transition to wetting occurs, for entropic
reasons, when the liquid's surface tension is sufficiently small that the free
energy cost in forming a thick film is sufficiently compensated by the fluid-
surface interaction energy. Guidelines useful for exploring wetting transitions
of other systems are analyzed, in terms of generic criteria involving the
"simple model", which yields results in terms of gas-surface interaction
parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy
Autologous haematopoietic stem cell transplantation as a first-line disease-modifying therapy in patients with ‘aggressive’ multiple sclerosis
Background:
Autologous haematopoietic stem cell transplantation (AHSCT) is an effective treatment for patients with multiple sclerosis (MS) who have highly active disease, despite the use of standard disease-modifying therapies (DMTs). However, the optimal time for offering AHSCT to patients with ‘aggressive’ MS is yet to be established.
Objectives:
The objective was to explore the safety and efficacy of AHSCT as a first-line DMT in patients with ‘aggressive’ MS.
Methods:
All patients with ‘aggressive’ MS who received AHSCT as a first-line DMT in five European and North American centres were retrospectively evaluated.
Results:
Twenty patients were identified. The median interval between diagnosis and AHSCT was 5 (1–20) months. All had multiple poor prognostic markers with a median pre-transplant Expanded Disability Status Scale (EDSS) score of 5.0 (1.5–9.5). After a median follow-up of 30 (12–118) months, the median EDSS score improved to 2.0 (0–6.5, p < 0.0001). No patient had further relapses. Three had residual magnetic resonance imaging (MRI) disease activities in the first 6 months post-transplant, but no further new or enhancing lesions were observed in subsequent scans.
Conclusion:
AHSCT is safe and effective as a first-line DMT in inducing rapid and sustained remission in patients with ‘aggressive’ MS
Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV
We present final searches of the anomalous gammaWW and ZWW trilinear gauge
boson couplings from WW and WZ production using lepton plus dijet final states
and a combination with results from Wgamma, WW, and WZ production with leptonic
final states. The analyzed data correspond to up to 8.6/fb of integrated
luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96
TeV. We set the most stringent limits at a hadron collider to date assuming two
different relations between the anomalous coupling parameters
Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2
TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154,
-0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization,
and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings
parameterization. We also present the most stringent limits of the W boson
magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL
Measurement of the photon-jet production differential cross section in collisions at \sqrt{s}=1.96~\TeV
We present measurements of the differential cross section dsigma/dpT_gamma
for the inclusive production of a photon in association with a b-quark jet for
photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for
photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is
the photon transverse momentum. The b-quark jets are required to have pT>15 GeV
and rapidity |y_jet| < 1.5. The results are based on data corresponding to an
integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the
Fermilab Tevatron Collider at sqrt(s)=1.96 TeV. The measured cross
sections are compared with next-to-leading order perturbative QCD calculations
using different sets of parton distribution functions as well as to predictions
based on the kT-factorization QCD approach, and those from the Sherpa and
Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.
Search for pair production of the scalar top quark in muon+tau final states
We present a search for the pair production of scalar top quarks
(), the lightest supersymmetric partners of the top quarks, in
collisions at a center-of-mass energy of 1.96 TeV, using data
corresponding to an integrated luminosity of {7.3 } collected with the
\dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is
assumed to decay into a quark, a charged lepton, and a scalar neutrino
(). We investigate final states arising from and
. With no significant excess of events observed above the
background expected from the standard model, we set exclusion limits on this
production process in the (,) plane.Comment: Submitted to Phys. Lett.
Search for Higgs bosons of the minimal supersymmetric standard model in p-pbar collisions at sqrt(s)=1.96 TeV
We report results from searches for neutral Higgs bosons produced in p-pbar
collisions recorded by the Dzero experiment at the Fermilab Tevatron Collider.
We study the production of inclusive neutral Higgs boson in the tautau final
state and in association with a b quark in the btautau and bbb final states.
These results are combined to improve the sensitivity to the production of
neutral Higgs bosons in the context of the minimal supersymmetric standard
model (MSSM). The data are found to be consistent with expectation from
background processes. Upper limits on MSSM Higgs boson production are set for
Higgs boson masses ranging from 90 to 300 GeV. We exclude tanBeta>20-30 for
Higgs boson masses below 180 GeV. These are the most stringent constraints on
MSSM Higgs boson production in p-pbar collisions.Comment: Submitted to Phys. Lett.
Retrospective study of pre-anesthetic electrocardiogram examination of 700 dogs conducted at the Veterinary Hospital of UFMG (2013-2014)
Abstract: Pre-operative electrocardiograms performed in 700 dogs were analyzed in order to establish correlation between sex, age, indication for surgery, body condition score, breed and weight. Initially a clinical questionnaire was filled out from each owner, including age, breed, sex, weight, clinical history and surgical indication. Dogs above 6 years of age or those showing any kind of cardiac auscultation disturbances were referred to electrocardiogram (ECG) evaluation. All ECG were performed and analyzed by the same veterinary specialist. Abnormalities at ECG were founnd in 364 of 700 (52%) evaluated dogs, and the most frequent variation was sinus arrhythmia, observed in 293 dogs (25.4%). No significant correlation was found between the electrocardiographic alterations with weight, sex and age of the animals. Therefore ECG should be conducted routinely regardless of age, sex, breed or surgical indication, highlighting its value for determining a safe anesthetic protocol that promotes minimal cardiopulmonary depression and allows rapid post-surgical recovery
Particles-vortex interactions and flow visualization in He4
Recent experiments have demonstrated a remarkable progress in implementing
and use of the Particle Image Velocimetry (PIV) and particle tracking
techniques for the study of turbulence in He4. However, an interpretation of
the experimental data in the superfluid phase requires understanding how the
motion of tracer particles is affected by the two components, the viscous
normal fluid and the inviscid superfluid. Of a particular importance is the
problem of particle interactions with quantized vortex lines which may not only
strongly affect the particle motion, but, under certain conditions, may even
trap particles on quantized vortex cores. The article reviews recent
theoretical, numerical, and experimental results in this rapidly developing
area of research, putting critically together recent results, and solving
apparent inconsistencies. Also discussed is a closely related technique of
detection of quantized vortices negative ion bubbles in He4.Comment: To appear in the J Low Temperature Physic
- …