151 research outputs found

    On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries

    Full text link
    We investigate the structure of the nonequilibrium stationary state (NESS) of a system of first and second class particles, as well as vacancies (holes), on L sites of a one-dimensional lattice in contact with first class particle reservoirs at the boundary sites; these particles can enter at site 1, when it is vacant, with rate alpha, and exit from site L with rate beta. Second class particles can neither enter nor leave the system, so the boundaries are semi-permeable. The internal dynamics are described by the usual totally asymmetric exclusion process (TASEP) with second class particles. An exact solution of the NESS was found by Arita. Here we describe two consequences of the fact that the flux of second class particles is zero. First, there exist (pinned and unpinned) fat shocks which determine the general structure of the phase diagram and of the local measures; the latter describe the microscopic structure of the system at different macroscopic points (in the limit L going to infinity in terms of superpositions of extremal measures of the infinite system. Second, the distribution of second class particles is given by an equilibrium ensemble in fixed volume, or equivalently but more simply by a pressure ensemble, in which the pair potential between neighboring particles grows logarithmically with distance. We also point out an unexpected feature in the microscopic structure of the NESS for finite L: if there are n second class particles in the system then the distribution of first class particles (respectively holes) on the first (respectively last) n sites is exchangeable.Comment: 28 pages, 4 figures. Changed title and introduction for clarity, added reference

    An Exactly Solvable Two-Way Traffic Model With Ordered Sequential Update

    Full text link
    Within the formalism of matrix product ansatz, we study a two-species asymmetric exclusion process with backward and forward site-ordered sequential update. This model, which was originally introduced with the random sequential update, describes a two-way traffic flow with a dynamic impurity and shows a phase transition between the free flow and traffic jam. We investigate the characteristics of this jamming and examine similarities and differences between our results and those with random sequential update.Comment: 25 pages, Revtex, 7 ps file

    Determinant representation for some transition probabilities in the TASEP with second class particles

    Full text link
    We study the transition probabilities for the totally asymmetric simple exclusion process (TASEP) on the infinite integer lattice with a finite, but arbitrary number of first and second class particles. Using the Bethe ansatz we present an explicit expression of these quantities in terms of the Bethe wave function. In a next step it is proved rigorously that this expression can be written in a compact determinantal form for the case where the order of the first and second class particles does not change in time. An independent geometrical approach provides insight into these results and enables us to generalize the determinantal solution to the multi-class TASEP.Comment: Minor revision; journal reference adde

    Generalized empty-interval method applied to a class of one-dimensional stochastic models

    Full text link
    In this work we study, on a finite and periodic lattice, a class of one-dimensional (bimolecular and single-species) reaction-diffusion models which cannot be mapped onto free-fermion models. We extend the conventional empty-interval method, also called {\it interparticle distribution function} (IPDF) method, by introducing a string function, which is simply related to relevant physical quantities. As an illustration, we specifically consider a model which cannot be solved directly by the conventional IPDF method and which can be viewed as a generalization of the {\it voter} model and/or as an {\it epidemic} model. We also consider the {\it reversible} diffusion-coagulation model with input of particles and determine other reaction-diffusion models which can be mapped onto the latter via suitable {\it similarity transformations}. Finally we study the problem of the propagation of a wave-front from an inhomogeneous initial configuration and note that the mean-field scenario predicted by Fisher's equation is not valid for the one-dimensional (microscopic) models under consideration.Comment: 19 pages, no figure. To appear in Physical Review E (November 2001

    Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding

    Get PDF
    Durden J, Schoening T, Althaus F, et al. Perspectives in Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, eds. Oceanography and Marine Biology: An Annual Review. 54. Boca Raton: CRC Press; 2016: 1-72

    Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment

    Get PDF
    LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020

    Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions

    Get PDF
    Background: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices
    corecore