13 research outputs found
Overproduction of corticotropin-releasing hormone blocks germinal center formation: role of corticosterone and impaired follicular dendritic cell networks
Item does not contain fulltex
Expression profiling identifies the CRH/CRH-R1 system as a modulator of neurovascular gene activity.
Corticotropin-releasing hormone receptor type 1 (CRH-R1)-deficient mice display reduced anxiety-like behavior, a chronic corticosterone deficit, and an impaired neuroendocrine stress response caused by disruption of the hypothalamic-pituitary-adrenocortical (HPA) axis. The molecular substrates and pathways of CRH/CRH-R1-dependent signaling mechanisms underlying the behavioral phenotype as well as the consequences of lifelong glucocorticoid deficit remain largely obscure. To dissect involved neuronal circuitries, we performed comparative expression profiling of brains of CRH-R1 mutant and wild-type mice using our custom made MPIP (Max Planck Institute of Psychiatry) 17k cDNA microarray. Microarray analysis yielded 107 genes showing altered expression levels when comparing CRH-R1 knockout mice with wild-type littermates. A significant proportion of differentially expressed genes was related to control of HPA and hypothalamic-pituitary-thyroid (HPT) axes reflecting not only the disturbance of the HPA axis in CRH-R1 mutant mice but also the interplay of both neuroendocrine systems. The spatial analysis of regulated genes revealed a prevalence for genes expressed in the cerebral microvasculature. This phenotype was confirmed by the successful cross-validation of regulated genes in CRH overexpressing mice. Analysis of the cerebral vasculature of CRH-R1 mutant and CRH overexpressing mice revealed alterations of functional rather than structural properties. A direct role of the CRH/CRH-R1 system was supported by demonstrating Crhr1 expression in the adult murine cerebral vasculature. In conclusion, these data suggest a novel, previously unknown role of the CRH/CRH-R1 system in modulating neurovascular gene expression and function
Amygdala protein kinase C epsilon regulates corticotropin-releasing factor and anxiety-like behavior
Altered behavioural adaptation in mice with neural corticotrophin-releasing factor overexpression
Overproduction of corticotrophin-releasing factor (CRF), the major mediator of the stress response, has been linked to anxiety, depression and addiction. CRF excess results in increased arousal, anxiety and altered cognition in rodents. The ability to adapt to a potentially threatening stimulus is crucial for survival, and impaired adaptation may underlie stress-related psychiatric disorders. Therefore, we examined the effects of chronic transgenic neural CRF overproduction on behavioural adaptation to repeated exposure to a non-home cage environment. We report that CRF transgenic mice show impaired adaptation in locomotor response to the novel open field. In contrast to wild-type (WT) mice, anxiety-related behaviour of CRF transgenic mice does not change during repeated exposure to the same environment over the period of 7 days or at retest 1 week later. We found that locomotor response to novelty correlates significantly with total locomotor activity and activity in the centre at the last day of testing and at retest in WT but not in CRF transgenic mice. Mice were divided into low responders and high responders on the basis of their initial locomotor response to novelty. We found that differences in habituation and re-exposure response are related to individual differences in locomotor response to novelty. In summary, these results show that CRF transgenic mice are fundamentally different from WT in their ability to adapt to an environmental stressor. This may be related to individual differences in stress reactivity. These findings have implications for our understanding of the role of CRF overproduction in behavioural maladaptation and stress-related psychiatric disorders