77 research outputs found

    Thermal desorption of CH4 retained in CO2 ice

    Full text link
    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.Comment: 8 pages, accepted for publication in Astrophysics & Space Scienc

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    The management of diabetic ketoacidosis in children

    Get PDF
    The object of this review is to provide the definitions, frequency, risk factors, pathophysiology, diagnostic considerations, and management recommendations for diabetic ketoacidosis (DKA) in children and adolescents, and to convey current knowledge of the causes of permanent disability or mortality from complications of DKA or its management, particularly the most common complication, cerebral edema (CE). DKA frequency at the time of diagnosis of pediatric diabetes is 10%–70%, varying with the availability of healthcare and the incidence of type 1 diabetes (T1D) in the community. Recurrent DKA rates are also dependent on medical services and socioeconomic circumstances. Management should be in centers with experience and where vital signs, neurologic status, and biochemistry can be monitored with sufficient frequency to prevent complications or, in the case of CE, to intervene rapidly with mannitol or hypertonic saline infusion. Fluid infusion should precede insulin administration (0.1 U/kg/h) by 1–2 hours; an initial bolus of 10–20 mL/kg 0.9% saline is followed by 0.45% saline calculated to supply maintenance and replace 5%–10% dehydration. Potassium (K) must be replaced early and sufficiently. Bicarbonate administration is contraindicated. The prevention of DKA at onset of diabetes requires an informed community and high index of suspicion; prevention of recurrent DKA, which is almost always due to insulin omission, necessitates a committed team effort

    Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia

    Get PDF
    Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system but the molecular mechanisms and their relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the preleukemic disorder Shwachman-Diamond syndrome induces mitochondrial dysfunction, oxidative stress and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the mouse model and a range of human preleukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome, the principal leukemia predisposition syndrome. Collectively, our findings reveal a concept of mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as an actionable determinant of disease outcome in human preleukemia

    LOFAR 144-MHz follow-up observations of GW170817

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society, Volume 494, Issue 4, June 2020, Pages 5110–5117, ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present low-radio-frequency follow-up observations of AT 2017gfo, the electromagnetic counterpart of GW170817, which was the first binary neutron star merger to be detected by Advanced LIGO-Virgo. These data, with a central frequency of 144 MHz, were obtained with LOFAR, the Low-Frequency Array. The maximum elevation of the target is just 13.7 degrees when observed with LOFAR, making our observations particularly challenging to calibrate and significantly limiting the achievable sensitivity. On time-scales of 130-138 and 371-374 days after the merger event, we obtain 3σ\sigma upper limits for the afterglow component of 6.6 and 19.5 mJy beam1^{-1}, respectively. Using our best upper limit and previously published, contemporaneous higher-frequency radio data, we place a limit on any potential steepening of the radio spectrum between 610 and 144 MHz: the two-point spectral index α1446102.5\alpha^{610}_{144} \gtrsim -2.5. We also show that LOFAR can detect the afterglows of future binary neutron star merger events occurring at more favourable elevations.Peer reviewe
    corecore