66 research outputs found

    Increased end-expiratory pressures improve lung function in near-term newborn rabbits with elevated airway liquid volume at birth

    Get PDF
    Approximately 53% of near-term newborns admitted to intensive care experience respiratory distress. These newborns are commonly delivered by cesarean section and have elevated airway liquid volumes at birth, which can cause respiratory morbidity. We investigated the effect of providing respiratory support with a positive end-expiratory pressure (PEEP) of 8 cmH(2)O on lung function in newborn rabbit kittens with elevated airway liquid volumes at birth. Near-term rabbits (30 days; term = 32 days) with airway liquid volumes that corresponded to vaginal delivery (similar to 7 mL/kg, control, n = 11) or cesarean section (similar to 37 mL/kg; elevated liquid (EL), n = 11] were mechanically ventilated (tidal volume= 8 mL/kg). The PEEP was changed after lung aeration from 0 to 8 to 0 cmH(2)O (control, n = 6; EL, n = 6), and in a separate group of kittens, PEEP was changed after lung aeration from 8 to 0 to 8 cmH(2)O (control, n = 5; EL, n = 5). Lung function (ventilator parameters, compliance, lung gas volumes, and distribution of gas within the lung) was evaluated using plethysmography and synchrotron-based phase-contrast X-ray imaging. EL kittens initially receiving 0 cmH(2)O PEEP had reduced functional residual capacities and lung compliance, requiring higher inflation pressures to aerate the lung compared with control kittens. Commencing ventilation with 8 cmH(2)O PEEP mitigated the adverse effects of EL, increasing lung compliance, functional residual capacity, and the uniformity and distribution of lung aeration, but did not normalize aeration of the distal airways. Respiratory support with PEEP supports lung function in near-term newborn rabbits with elevated airway liquid volumes at birth who are at a greater risk of suffering respiratory distress.NEW & NOTEWORTHY Term babies born by cesarean section have elevated airway liquid volumes, which predisposes them to respiratory distress. Treatments targeting molecular mechanisms to clear lung liquid are ineffective for term newborn respiratory distress. We showed that respiratory support with an end-expiratory pressure supports lung function in near-term rabbits with elevated airway liquid volumes at birth. This study provides further physiological understanding of lung function in newborns with elevated airway liquid volumes at risk of respiratory distress.Developmen

    Higher CPAP levels improve functional residual capacity at birth in preterm rabbits

    Get PDF
    BACKGROUND: Preterm infants are commonly supported with 4-8 cm H2O continuous positive airway pressures (CPAP), although higher CPAP levels may improve functional residual capacity (FRC).METHODS: Preterm rabbits delivered at 29/32 days (similar to 26-28 weeks human) gestation received 0, 5, 8, 12, 15 cm H2O of CPAP or variable CPAP of 15 to 5 or 15 to 8 cm H2O (decreasing similar to 2 cm H2O/min) for up to 10 min after birth.RESULTS: FRC was lower in the 0 (6.8 (1.0-11.2) mL/kg) and 5 (10.1 (1.1-16.8) mL/kg) compared to the 15 (18.8 (10.9-22.4) mL/kg) cm H2O groups (p = 0.003). Fewer kittens achieved FRC > 15 mL/kg in the 0 (20%), compared to 8 (36%), 12 (60%) and 15 (73%) cm H2O groups (p = 0.008). While breathing rates were not different (p = 0.096), apnoea tended to occur more often with CPAP < 8 cm H2O (p = 0.185). CPAP belly and lung bulging rates were similar whereas pneumothoraces were rare. Lowering CPAP from 15 to 5, but not 15 to 8 cm H2O, decreased FRC and breathing rates.CONCLUSION: In all, 15 cm H2O of CPAP improved lung aeration and reduced apnoea, but did not increase the risk of lung over-expansion, pneumothorax or CPAP belly immediately after birth. FRC and breathing rates were maintained when CPAP was decreased to 8 cm H2O.Developmen

    Increasing Respiratory Effort With 100% Oxygen During Resuscitation of Preterm Rabbits at Birth

    Get PDF
    Background: Spontaneous breathing is essential for successful non-invasive respiratory support delivered by a facemask at birth. As hypoxia is a potent inhibitor of spontaneous breathing, initiating respiratory support with a high fraction of inspired O2 may reduce the risk of hypoxia and increase respiratory effort at birth. Methods: Preterm rabbit kittens (29 days gestation, term ~32 days) were delivered and randomized to receive continuous positive airway pressure with either 21% (n = 12) or 100% O2 (n = 8) via a facemask. If apnea occurred, intermittent positive pressure ventilation (iPPV) was applied with either 21% or 100% O2 in kittens who started in 21% O2, and remained at 100% O2 for kittens who started the experiment in 100% O2. Respiratory rate (breaths per minute, bpm) and variability in inter-breath interval (%) were measured from esophageal pressure recordings and functional residual capacity (FRC) was measured from synchrotron phase-contrast X-ray images. Results: Initially, kittens receiving 21% O2 had a significantly lower respiratory rate and higher variability in inter-breath interval, indicating a less stable breathing pattern than kittens starting in 100% O2 [median (IQR) respiratory rate: 16 (4–28) vs. 38 (29–46) bpm, p = 0.001; variability in inter-breath interval: 33.3% (17.2–50.1%) vs. 27.5% (18.6–36.3%), p = 0.009]. Apnea that required iPPV, was more frequently observed in kittens in whom resuscitation was started with 21% compared to 100% O2 (11/12 vs. 1/8, p = 0.001). After recovering from apnea, respiratory rate was significantly lower and variability in inter-breath interval was significantly higher in kittens who received iPPV with 21% compared to 100% O2. FRC was not different between study groups at both timepoints. Conclusion: Initiating resuscitation with 100% O2 resulted in increased respiratory activity and stability, thereby reducing the risk of apnea and need for iPPV after birth. Further studies in human preterm infants are mandatory to confirm the benefit of this approach in terms of oxygenation. In addition, the ability to avoid hyperoxia after initiation of resuscitation with 100% oxygen, using a titration protocol based on oxygen saturation, needs to be clarified

    Methane Clumped Isotopes: Progress and Potential for a New Isotopic Tracer

    Get PDF
    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding petroleum systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. In general, clumped isotope measurements indicate plausible formation temperatures for abiotic, thermogenic, and microbial methane in many geological environments, which is encouraging for the further development of this measurement as a geothermometer, and as a tracer for the source of natural gas reservoirs and emissions. We also highlight, however, instances where clumped isotope derived temperatures are higher than expected, and discuss possible factors that could distort equilibrium formation temperature signals. In microbial methane from freshwater ecosystems, in particular, clumped isotope values appear to be controlled by kinetic effects, and may ultimately be useful to study methanogen metabolism

    Integrative functional genomic analysis of human brain development and neuropsychiatric risks

    Get PDF
    To broaden our understanding of human neurodevelopment, we profiled transcriptomic and epigenomic landscapes across brain regions and/or cell types for the entire span of prenatal and postnatal development. Integrative analysis revealed temporal, regional, sex, and cell type-specific dynamics.We observed a global transcriptomic cup-shaped pattern, characterized by a late fetal transition associated with sharply decreased regional differences and changes in cellular composition and maturation, followed by a reversal in childhood-adolescence, and accompanied by epigenomic reorganizations. Analysis of gene coexpression modules revealed relationships with epigenomic regulation and neurodevelopmental processes. Genes with genetic associations to brain-based traits and neuropsychiatric disorders (including MEF2C, SATB2, SOX5, TCF4, and TSHZ3) converged in a small number of modules and distinct cell types, revealing insights into neurodevelopment and the genomic basis of neuropsychiatric risks

    Generalised Cornu spirals: an experimental study using hard x-rays

    No full text
    The Cornu spiral is a graphical aid that has been used historically to evaluate Fresnel integrals. It is also the Argand-plane mapping of a monochromatic complex scalar plane wave diffracted by a hard edge. We have successfully reconstructed a Cornu spiral due to diffraction of hard x-rays from a piece of Kapton tape. Additionally, we have explored the generalisation of the Cornu spiral by observing the Argand-plane mapping of complex scalar electromagnetic fields diffracted by a cylinder and a sphere embedded within a cylinder.Freda Werdiger, Marcus J. Kitchen and David M. Pagani
    corecore