313 research outputs found

    REWEAVING NARRATIVES ABOUT HUMANS AND INVASIVE SPECIES

    Get PDF
    AbstractInvasive species have become a key theme in environmental science over the past several decades, with our usual conception of them being quite oppositional. Since many of them are here to stay, however, we require a more flexible and evolving conception that can respond to diverse stakeholder perspectives and values. It must also highlight the role of humans in their creation and spread. Here, I present a variety of ways of looking at these species in the hope that they will contribute to more rich discussion about how we might better weave together the presence of humans and invasive species on hybrid landscapes of the future.RĂ©sumĂ©Au cours des derniĂšres dĂ©cennies, les espĂšces invasives sont devenues un thĂšme majeur des sciences environnementales. En gĂ©nĂ©ral, elles sont perçues de façon nĂ©gative mais, comme beaucoup d’entre elles sont appelĂ©es Ă  durer, nous nous devons d’adopter Ă  leur Ă©gard une attitude plus souple, qui tienne compte des perspectives et des valeurs des diffĂ©rentes parties en prĂ©sence. Aussi devons-nous mettre en Ă©vidence le rĂŽle que joue l’ĂȘtre humain dans leur apparition et leur diffusion. Nous prĂ©sentons ici diverses maniĂšres d’apprĂ©hender ces espĂšces dans l’espoir d’enrichir la discussion portant sur l’amĂ©lioration de la coexistence entre les humains et les espĂšces invasives dans les paysages hybrides de demain

    A modification of the convective constraint release mechanism in the molecular stress function model giving enhanced vortex growth

    Get PDF
    The molecular stress function model with convective constraint release (MSF with CCR) constitutive model [J. Rheol. 45 (2001), 1387] is capable of fitting all viscometric data for IUPAC LDPE, with only two adjustable parameters (with difference found only on reported Âżsteady-stateÂż elongational viscosities). The full MSF with CCR model is implemented in a backwards particle-tracking implementation, using an adaptive method for the computation of relative stretch that reduces simulation time many-fold, with insignificant loss of accuracy. The model is shown to give improved results over earlier versions of the MSF (without CCR) when compared to well-known experimental data from White and Kondo [J. non-Newt. Fluid Mech., 3 (1977), 41]; but still to under-predict contraction flow opening angles. The discrepancy is traced to the interaction between the rotational dissipative function and the large stretch levels caused by the contraction flow. A modified combination of dissipative functions in the constraint release mechanism is proposed, which aims to reduce this interaction to allow greater strain hardening in a mixed flow. The modified constraint release mechanism is shown to fit viscometric rheological data equally well, but to give opening angles in the complex contraction flow that are much closer to the experimental data from White and Kondo. It is shown (we believe for the first time) that a constitutive model demonstrates an accurate fit to all planar elongational, uniaxial elongational and shear viscometric data, with a simultaneous agreement with this well-known experimental opening angle data. The sensitivity of results to inaccuracies caused by representing the components of the deformation gradient tensor to finite precision is examined; results are found to be insensitive to even large reductions in the precision used for the representation of components. It is shown that two models that give identical response in elongational flow, and a very similar fit to available shear data, give significantly different results in flows containing a mix of deformation modes. The implication for constitutive models is that evaluation against mixed deformation mode flow data is desirable in addition to evaluation against viscometric measurements

    The human and social dimensions of invasion science and management

    Get PDF
    Biological invasions are a leading causeof global environmental changegiven their effectson both humansandbiodiversity. Humans introduceinvasive alien species and may facilitate their establishment and spread,which can alter ecosystem services, livelihoods,and human well-being. People perceivethe benefits and costs of these species through thelens of diverse value systems; these perspectives influencedecisions about when and where to manage them. Despite the entanglement of humans with invasivealienspecies,mostresearch on the topic has focusedon their ecologicalaspects. Only relatively recently have thehuman and social dimensions of invasions started to receivesustainedattention in light of theirimportancefor understandingand governing biological invasions.This editorial drawsoncontributions to a special issueon the “Human and Social Dimensions of Invasion Science”and other literatureto elucidatemajortrendsand current contributionsin this research area. Weexamine the relation between humans and biological invasions in terms of fourcrosscuttingthemes:(1) how humans causebiological invasions;(2) how humans conceptualize and perceive them;(3)how humans are affected –both positively and negatively –by them;and (4) how humansrespondto them.We also highlight several ways in which research on the human and social dimensionsof invasion science improves understanding, stakeholder engagement,and managemen

    Stakeholder engagement in the study and management of invasive alien species

    Get PDF
    Invasive alien species are a major driver of global environmental change and a range of management interventions are needed to manage their effects on biodiversity, ecosystem services, human well-being and local livelihoods. Stakeholder engagement is widely advocated to integrate diverse knowledge and perspectives in the management of invasive species and to deal with potential conflicts of interest. We reviewed the literature in the ISI Web of Science on stakeholder engagement (the process of involving stakeholders (actors) in decision making, management actions and knowledge creation) in invasion science to assess and understand what has been done (looking at approaches and methodologies used, stakeholders involved, and outcomes from engagement) and to make recommendations for future work. Research on stakeholder engagement in invasion science has increased over the last decade, helping to improve scientific knowledge and contributing towards policy formulation and co-implementation of management. However, many challenges remain and engagement could be made more effective. For example, most studies engage only one stakeholder group passively using questionnaires, primarily for assessing local knowledge and perceptions. Although useful for management and policy planning, these stakeholders are not active participants and there is no two-way flow of knowledge. To make stakeholder involvement more useful, we encourage more integrative and collaborative engagement to (1) improve co-design, co-creation and co-implementation of research and management actions; (2) promote social learning and provide feedback to stakeholders; (3) enhance collaboration and partnerships beyond the natural sciences and academia (interdisciplinary and transdisciplinary collaboration); and (4) discuss some practical and policy suggestions for improving stakeholder engagement in invasion science research and management. This will help facilitate different stakeholders to work better together, allowing problems associated with biological invasions to be tackled more holistically and successfully

    Asymmetric Dark Matter and Dark Radiation

    Get PDF
    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.Comment: 22 pages, 5 figures, to be published in JCAP, minor changes to match version to be publishe

    Explaining people’s perceptions of invasive alien species:A conceptual framework

    Get PDF
    Human perceptions of nature and the environment are increasingly being recognised as important for environmental management and conservation. Understanding people's perceptions is crucial for understanding behaviour and developing effective management strategies to maintain, preserve and improve biodiversity, ecosystem services and human well-being. As an interdisciplinary team, we produced a synthesis of the key factors that influence people's perceptions of invasive alien species, and ordered them in a conceptual framework. In a context of considerable complexity and variation across time and space, we identified six broad-scale dimensions: (1) attributes of the individual perceiving the invasive alien species; (2) characteristics of the invasive alien species itself; (3) effects of the invasion (including negative and positive impacts, i.e. benefits and costs); (4) socio-cultural context; (5) landscape context; and (6) institutional and policy context. A number of underlying and facilitating aspects for each of these six overarching dimensions are also identified and discussed. Synthesising and understanding the main factors that influence people's perceptions is useful to guide future research, to facilitate dialogue and negotiation between actors, and to aid management and policy formulation and governance of invasive alien species. This can help to circumvent and mitigate conflicts, support prioritisation plans, improve stakeholder engagement platforms, and implement control measures

    Statistics of the gravitational force in various dimensions of space: from Gaussian to Levy laws

    Full text link
    We discuss the distribution of the gravitational force created by a Poissonian distribution of field sources (stars, galaxies,...) in different dimensions of space d. In d=3, it is given by a Levy law called the Holtsmark distribution. It presents an algebraic tail for large fluctuations due to the contribution of the nearest neighbor. In d=2, it is given by a marginal Gaussian distribution intermediate between Gaussian and Levy laws. In d=1, it is exactly given by the Bernouilli distribution (for any particle number N) which becomes Gaussian for N>>1. Therefore, the dimension d=2 is critical regarding the statistics of the gravitational force. We generalize these results for inhomogeneous systems with arbitrary power-law density profile and arbitrary power-law force in a d-dimensional universe

    Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes

    Get PDF
    Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis

    Interstellar MHD Turbulence and Star Formation

    Full text link
    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as per referee's recommendation

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    • 

    corecore