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Abstract 
The molecular stress function model with convective constraint release (MSF with CCR) 
constitutive model [J. Rheol. 45 (2001), 1387] is capable of fitting all viscometric data for 
IUPAC LDPE, with only two adjustable parameters (with difference found only on reported 
“steady-state” elongational viscosities). The full MSF with CCR model is implemented in a 
backwards particle-tracking implementation, using an adaptive method for the computation of 
relative stretch that reduces simulation time many-fold, with insignificant loss of accuracy. 
The model is shown to give improved results over earlier versions of the MSF (without CCR) 
when compared to well-known experimental data from White and Kondo [J. non-Newt. Fluid 
Mech., 3 (1977), 41]; but still to under-predict contraction flow opening angles. The 
discrepancy is traced to the interaction between the rotational dissipative function and the 
large stretch levels caused by the contraction flow. A modified combination of dissipative 
functions in the constraint release mechanism is proposed, which aims to reduce this 
interaction to allow greater strain hardening in a mixed flow. The modified constraint release 
mechanism is shown to fit viscometric rheological data equally well, but to give opening 
angles in the complex contraction flow that are much closer to the experimental data from 
White and Kondo. It is shown (we believe for the first time) that a constitutive model 
demonstrates an accurate fit to all planar elongational, uniaxial elongational and shear 
viscometric data, with a simultaneous agreement with this well-known experimental opening 
angle data. The sensitivity of results to inaccuracies caused by representing the components of 
the deformation gradient tensor to finite precision is examined; results are found to be 
insensitive to even large reductions in the precision used for the representation of 
components. It is shown that two models that give identical response in elongational flow, and 
a very similar fit to available shear data, give significantly different results in flows 
containing a mix of deformation modes. The implication for constitutive models is that 
evaluation against mixed deformation mode flow data is desirable in addition to evaluation 
against viscometric measurements.  
 
keywords: Molecular stress function; Simulation; Convective constraint release; Vortex 
growth; Opening angle 
 
 
1. Introduction 
 
Viscoelastic rheological modelling has steadily advanced in recent years. The 
‘separable’ KBKZ model of Wagner [1] has had success in modelling much, but not 
all, rheological data. Using the damping function of Papanastasiou et. al. [2], the 
model was shown to fit rheological LDPE data in steady-state shear, uniaxial 
elongation, and first normal stress-difference. With the same parameters the model 
also gave a good fit to experimentally measured vortex opening angles measurements 
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in a 5.75:1 contraction ratio axisymmetric die [3]. Variations of the model could give 
non-zero second normal stress differences [4], and the model had considerable 
success in axisymmetric flows of strain-hardening polymer melt. The salient 
weakness of the model was its failure to give strain-hardening in planar elongation, 
with simultaneous shear softening; this lead to a general failure to predict vortex 
growth in planar contraction flows. A modification to the damping function permitted 
strain hardening in uniaxial, planar, and biaxial elongation, with simultaneous shear 
softening [5]. Simulation of strain-hardening LDPE flows using this model gave 
vortex growth in both axisymmetric and planar contraction flows [5, 6], however the 
model had the weakness that the rate of strain-hardening was below that seen in 
experiment [5]. 
 
A molecularly based model, the Molecular Stress Function (MSF) model was 
demonstrated to fit transient planar, uniaxial, and biaxial elongational data for long 
chain branched polymers, and to fit both first and second normal stress difference 
measurements in flows of un-branched polymer [7-10]. This was achieved with only a 
single adjustable parameter, originally used in a “fit-function”, that related relative 
deformation to tube-stretch. The particular model given in [10] gave very significant 
improvement in vortex prediction, over earlier KBKZ models [11], but the model 
over-predicted shear stress and first normal stress difference in strain hardening melts 
[12]. 
 
More recent developments of the MSF model have focussed on a convective 
constraint release (CCR) mechanism, as first introduced by Marrucci [13]. This model 
uses a differential equation for tube stretch, originating from an energy-balance 
analysis, and employs two adjustable parameters. The model has been demonstrated 
to fit not only elongational data, but also shear stress and first and second normal 
stress difference for strain hardening melts. This model is the focus of this work, and 
is detailed in section 2. 
 
Molecular considerations have figured strongly in other recent developments in 
rheological modelling - including the time-integral Pom-Pom model [14,15,16], the 
Double Convection Reptation model (DCR) (with both time-integral and differential 
forms) [17, 18, 19], and in differential models [20, 21]. Simulation of time-integral 
viscoelastic flows with particle tracking has been advanced by the work of Dupont 
and Crochet [3], Tanner [22,4] and Mitsoulis [23,24]. Techniques for tracking, 
solution, and tensor computation have been further developed [5, 11, 25]. A purely 
Eulerian approach, whereby the deformation fields are convected was introduced by 
Peters et. al [26], giving time-dependant two dimensional solutions. Rasmussen 
introduced a Lagrangian mesh method suitable for three dimensional time-dependant 
viscoelastic flows, including a Rivlin-Sawyers model [27], and a modified MSF with 
convective constraint release which was applied to membrane inflation [28].  
 
It has not been shown that a time-integral constitutive model can fit all viscometric 
rheological data for IUPAC LDPE, and also match the vortex opening angle data in a 
5.75:1 axisymmetric contraction flow measured by experiment by White and Kondo 
[29]. Concurring with such experimental data is an important requirement for a 
constitutive model, since it tests a model’s response in a non-viscometric flow, 
containing a mixture of elongation and shear. This problem is studied in this work, 
and leads to a suggested modification to the convective constraint release mechanism 
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that further isolates elongational stretch from dissipation by shear. The resulting MSF 
model is shown to match the viscometric rheological data, and agree much more 
closely with the contraction flow experimental data. 
 
2. The Molecular Stress Function model 
 
The Molecular Stress Function model (MSF) gives the extra-stress in a flow, , 
according to the time-integral model: 

( )tτ

 

  ,     (1) ( ) ( ) ( ) '',', dtttttmt
t

∫ ∞−
= MSFSτ

 
where  is a memory function between time t in the past, and the current time t, 
and S  is the strain measure between times t  and t. This strain measure can be 
written as: 
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( ',ttMSF

)
)

)
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'
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 ,      (2) ( ) ( ) ( ',',', 2 ttttftt DEMSF SS =
 
whereS  is the Doi-Edwards strain tensor [9, 10], and ( ', ttDE ( )', ttf  represents the 
ratio of tube diameters aa0 , where a is the tube diameter at time t, and a0 is the tube 
diameter of the unstretched segments that were created at time 't . 
 
Considerable progress was made by defining ( )',2 ttf  as a function of the average 
value of the logarithm of the deformed tube segment lengths, 'lnu , as defined in 

reference [10]. The strain energy of the  system, W  is proportional to ; 
introduction of a maximum value for stored energy, and thus stretch, led to a fit-
function for  in terms of  only

MSF 12 −f

( ',2 ttf ) 'lnu  and a single parameter. The model was 
shown capable of fitting a wide range of transient and steady state measurements in 
elongational flows for a range of polymer melts [9, 10]. An additional attraction is 
that simulations with this model can be performed using the computationally efficient 
“backwards integration” method employed for KBKZ type models  [11]. Despite the 
quantitative accuracy for elongational flows, there remained a degree of over-
prediction of shear stress and first normal stress difference in shear flow [12].  
 
Physical consideration of the rate of storage of energy, and the rate of dissipation of 
energy lead to an evolution equation for of the form: 2f
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where k is the velocity gradient tensor, S is the orientation tensor (where S = 1/5 SDE). 
The parameter β is equal to unity for linear melts, and (normally) equal to 2 for strain 
hardening melts [12, 30, 31]. The term CR is a form of the convective constraint 
release mechanism suggested by Marrucci [13]. 
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2.1 Convective constraint release in the Molecular stress function. 
 
The form of  the convective constraint release mechanism, CR, was established in ref. 
[12] as: 
 ( ) ( pqq ,,gfCR 22 1−= ) ,      (4) 
where qq, and p are the unit vector  normal to tube cross-section, its affine time 
derivative, and the affine time-derivative of a unit vector tangential to a tube, 
respectively [12]. It was shown that q  and p  are always coaxial in non-rotational 
flow, and always perpendicular in shear flow. This led to ( )pqq ,,g  being expressed in 
terms of two dissipative functions ( )pqq ,,g1 , and ( )pqq ,,g2  which respond very 
differently to rotational and irrotational flows.  
 
The linear addition of these two functions has been used by Wagner as the “simplest” 
continuation, giving a constraint release mechanism with two parameters, a1 and a2 : 
 

 ( ) ( ) ([ pqqpqq ,,ga,,gafCR 2211
22 1

2
1

+−= ) ]   (5) 

  
For flows involving changes in deformation rate, these two functions  can be 
expressed objectively in terms of  the orientation tensor, S , and the Rivlin-Ericksen  
tensors , A1  and A2 [12]: 
 

 ( ) ( )1 1
1,
2

g , , g= = 2
1 1q q p S A A : S ,      (6) 

and  ( ) ( )2 2
1, ,
2

g , , g= = − 2
1 2 2 1q q p S A A A : S A : S .   (7) 

 
The two Rivlin-Ericksen tensors are given by 
 
 ,        (8) 22

1 DA 4=

and ( T2
1

1
2 WDDWAAA ⋅+⋅++= 2

Dt
D ) ,     (9) 

 
where W and D are the rate of rotation tensor, and rate of deformation tensor 
respectively, given by: 
 

 ( TkkW −=
2
1 ) ,        (10) 

and  ( Tkk +=
2
1 )

)

D .        (11) 

 
The function  is significant in elongational flows, whereas is 

significant in rotational flow. Crucially, 
(1 ,g 1S A ( )2 , ,g 1 2S A A

( )2 , ,g 1 2S A A =0 in constant strain-rate 
extensional flows; this allows CR to distinguish between rotational and irrotational 
flows [12]. 
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The current work assesses the models performance against experimental data for 
LDPE in a 5.75 : 1 axisymmetric contraction flow from White and Kondo. It is noted 
that in the complex flows encountered in the geometry (‘complex’ implying a 
combination of shear and elongation, that varies along a particles path), the rise in 

 is much lower than that given by earlier MSF models (without CCR), and 
achieves both lower stress levels and vortex growth than expected.  We reason that the 
large values of  induced by the elongational flow into the contraction suffer heavy 
dissipation from the  term, due to the levels of shear, and rate change, in 

the flow. Examination of the evolution equation for  shows that the dissipation rate 
of    due to rotational flow is approximately proportional to  at 

large ; this gives a very large rate of dissipation in the contraction since  is 
typically an order of magnitude higher than values reached in simple shear flow. 

( ',2 ttf

2f

f

)

)

2f
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We propose a method to isolate stored elongational energy from heavy dissipation by 
modest rotational components; we make the dissipation rate for  relatively 
independent of the magnitude of , whilst maintaining the behaviour of the original 
at low values of , especially the asymptotic nature around .  

2f
f

f 12 =f
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The method does not change the behaviour in constant rate elongational flow, since 
function is then zero. In the remainder of this work, we refer to the evolution 
equation, Eq.3, with the original linear combination of functions  and  given in 
Eq.5 as ‘model CR1’, and with the weighted combination expressed in Eq.12 as 
‘model CR2’. 

2g

1g 2g

 
2.2 Comparison with rheometric data 
 
We assess the models against flows of the IUPAC LDPE melt. This is because the 
melt is particularly well characterised with memory function data, and sufficient 
transient and steady-state rheometric data to give a “best fit”, with enough data for 
independent cross-comparison between transient and steady-state predictions. 
Experimental results are available for an abrupt 5.75:1 contraction ratio die, allowing 
direct comparison with simulation. Throughout this work, we assume that the memory 
function in Eq.1 can be approximated by the well known sum of exponentials: 
 

( ) ( )∑ 






 −
−=

i ii

i ttgttm
λλ

'exp', .       (13) 

 
We use the relaxation times, λi , and relaxation moduli, gi , data from Laun [32, 33]. 
The relaxation times and moduli at the different temperatures relevant to IUPAC 
LDPE data are tabulated in ref. [11]. A value of β =2 was appropriate for the strain-
hardening rate of the material, this value is used throughout this work. 
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Figure 1 shows the response of  from models CR1 and CR2 in elongational and 
shear flow. Values of a  were obtained from best fit to the transient planar and 
uniaxial elongation data at 125°C from Laun and Schuch [34], then values of a  were 
obtained by fitting to the steady state shear data from Meissner [35]. Both models use 
the same value of  ( a ), but different values of a  ( a for model 
CR1, and for model CR2).  

2f

1

1

2

1a 012.0= 2 07.02 =
55.02 =a

 
As shown in [12], rises to a plateau in elongational flow with model CR1, whereas 
in shear flow it rises to a peak (a few units high) and then reduces back to unity; 
elongational behaviour is identical using model CR2 (since ). Qualitative 
behaviour in shear is the same with a peak followed by a reduction to unity. The peak 
is seen to be shifted to a slightly higher strain (due to the greater dissipation at low 

), this peak is followed by a sharper fall. 

2f

02 =g

2f
 
We note first that model CR1 gives an excellent fit to the key IUPAC rheometric data 
using a1 =0.012, and a2 =0.07 : data for steady-state shear, steady-state first normal 
stress difference, transient planar elongation, transient uniaxial elongation and 
transient shear are all fitted simultaneously by this one model. This is clearly a very 
significant advance over previous models, including the MSF without CCR (which 
over predicted stresses in shear [12]), and the ‘adapted KBKZ’ model [5] (which 
additionally gives a slower rise rate than transient elongational data). 
 
We demonstrate the (equally accurate) viscometric response of the variation ‘model 
CR2’ in Figures 2 and 3. Figure 2 compares the fit of models CR1 and CR2 in 
comparison to the transient elongational and shear data from Laun and Schuch at 
125°C [34]. Both planar and uniaxial elongational data are well fitted, and the rate, 
slight overshoot, and large strain asymptote of shear viscosity are closely matched by 
both models. The fit to the transient shear data is effectively a prediction of the 
models from choosing their respective values of a2 to fit Meissner’s steady-state shear 
data at 150°C. 
 
Figure 3 compares steady-state shear predictions of model CR1 and CR2 with 
Meissner’s data [35]. For completeness predictions for steady-state elongational 
viscosity are compared with uniaxial measurements reported in ref. [33]. Using  a2 = 
0.07 for CR1, and a2 = 0.55 for CR2, both models give an excellent fit to both shear 
stresses and first normal stress difference, without a tendency for over-prediction. 
 
3. Time-integral simulation method 
 
From a computational point of view, the ‘MSF with CCR’ model differs greatly from 
MSF models without CCR, and ‘traditional’ KBKZ models. The single greatest 
difference is that the stress integration cannot be performed monotonically as one 
tracks a particle backwards in time. The reason for this is that to find the stress 
contribution from a time t  in the past, one must know not only the Doi-Edwards 
tensor between times 't  and the current time, t, but also the relative stretch between 
times  and t, 

'

't ( )',2 ttf . This involves starting with an isotropic distribution for S at 
time '  and =1 (i.e. ), and integrating  forwards in time through all t 2f ( ) 1',2 =tf 't 2f

 6



times ' , where 't t''' ≤≤ tt
S

. It is perhaps of value to state that the terms S  and , as 
they appear in Eq.3, are  and 

2f
( tt ′′′ , ) ( )ttf ′′′ ,2 , respectively. 

)

( ) ( ,' tt Fk= )'td

( )',tt

( )', ttF ( ) 0.05F

1F− k

 
3.1 Overview of the solution method 
 
The simulation uses nine-noded bi-quadratic elements to represent velocity 
components, with one order lower interpolation used for pressure. An initial Stokes’ 
flow solution is computed to start the iterative process. The viscoelastic stress 
resulting from the flow solution of the previous iteration is computed for each Gauss 
point in each element; to obtain the stress for a particle at a Gauss point it is necessary 
to know the history of that particle. The flow kinematics are used to track a particle 
‘backwards’ in time, the method used for tracking is given in detail in ref [11]; this 
reference details the streamline tracking method, and the method for locating the 
particle’s position in an element’s natural coordinate system as the particle is tracked 
back through many elements on its course.  
 
3.2 History-storage and time-step considerations 
 
The particle strictly needs to be tracked back to “ - ∞”, in practice this must be 
moderated – we use 5 times the longest relaxation time as the target. The velocity 
gradient tensor k is computed by the least-squares method, described in [23], to give a 
smooth and continuous velocity gradient field. As discussed in [5], the trace of k, 
resulting from an incompressible finite-element flow solution, will not in general be 
zero, thus the ‘error’ in the trace is ‘shared’ between the diagonal terms to maintain a 
physical meaningful deformation gradient tensor. The deformation gradient tensor, 

 is computed by solution of ( ',ttF
 

 ( )
'

',
dt

ttF .      (14) 

 
As detailed in ref. [11], a 4th order Runga-Kutta method, with controlled integration 
time steps was used to compute F ; the combination will be shown (in section 
4.3) to maintain unity determinant until a point that approaches the limit set by 
machine precision (64-bit). When, along some particle tracks, the deformation 
gradient tensor,  starts to become ill-conditioned (we use ( )det 1− >  

as the test), back tracking is stopped and the final value of is used for earlier stress 
contributions; results will be shown insensitive to this (in the case that F is computed 
to a precision which approaches the expected limit with 64-bit computation).  

F

 
Values that need to be stored at each time s, where 'tts −= ,  are: s, , , 
and integration weights arising from the time-integration scheme to be used.  

( )',tt ( )'t

 
Time stepping considerations are slightly more involved than with KBKZ type 
models. As with KBKZ-type models, time steps need to be moderated to allow 
accurate integration of the exponential time-constant weights implied by the memory 
function approximation (Eq.13), and they also need to be moderated for accurate 
tracking through elements. For the MSF with CCR model, the accurate resolution of 
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the history of must be considered independently. Consideration of Eq.3 , and Eqs.5 
and 12 suggests that significant errors in the resolution of  are likely if there is a 
large change in the velocity gradient tensor k, or the orientation tensor S over a single  

time-step. To moderate this effect, the current rate of change of k, 

2f
2f

dt
d k was estimated 

from finite differencing the two latest samples of k. It was ensured that: 
 

kk
10
1

≤×∆
td

dt  ,        (15) 

where z , implies the magnitude of a tensor, z ,  given by Tz:z
2
1 . This additional 

limitation on the time-step limits changes in the velocity gradient tensor to around 
10% per step to assist resolution. The additional requirement involves significant 
extra computation, but is very effective in picking up regions of high ‘activity’ in the 
distant past, and gives much better convergence if included than if omitted. We 
ascribe this to the reduced variation due to ‘chance’ sampling as particles flow past 
localised regions of high deformation rate, such as particles in both the main flow and 
the vortex that flow past the ‘lip’. 
 
3.3 Stress computation 

To perform the stress integration in Eq.1 it is necessary to know the stretch between 
any time in the past, ' , and the current time, . To do this  must be computed 
forwards in time according to Eq.3, starting at value 1 at time  t  ( )  to 
arrive at the relative stretch . To achieve this the orientation tensor relative to 
time , , must be determined for all intermediate times, 't , where t ; 
starting with an isotropic distribution at time ' , and ending with .  The 
integration of  moves thorough all intermediate times. For these computations it is 
appropriate to denote the stored values of (inverted) deformation gradient tensor and 
velocity gradient tensor that lie between times t  and t  as 

t t 2

( )2

( )2

't ( )','' ttS 't≥
t

2

f

'

' 1',' =ttf

''t≥
( )', ttS

', ttf

f

' ( )'', tt1−

)

F , and . ( )''tk

3.3.1 Computation of 2f  

The deformation gradient tensor between time 't  and time t , , can be 
deduced from stored values using: 

'' ( ','' ttF

 ( ) ( ) ( '',',','' tttttt 1FFF −= ) ,      (16) 

from the chain rule detailed by Tanner [22]. ( )','' ttF  can then be used to calculate the 
relative orientation tensor between 't  and ' , 't ( )','' ttS  [12]. This can be done by direct 
spherical integration, as in ref. [11], or to a close approximation by calculating the 
Cauchy tensor, , the Finger strain tensor, FFC T= ( )1−F F

f

T

2

-1 , and then using Currie’s 
approximation [36]. In view of the very large number of times that the relative 
orientation tensor S must be calculated to compute , and its significant 
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computational cost when done by numerical integration, we use Currie’s 
approximation throughout in simulations. 
With , k , and time s available at all storage points, the rate of rotation, and 
rate of deformation tensors , and 

( )','' ttS ( )''t
( )''tW ( )''tD  can be deduced using Eqs.10 and 11, 

and the rate of change of the Rivlin-Eriksen tensor td1Ad can be calculated. We 
compute the time derivative of  by finite-differencing in time between the value of 
A1 at time 'and the value of A1 at previous point backtracked to (i.e. at ). This 
gives a value for the derivative that is a representative average between these two 
times, this is consistent with the forward integration used to calculate . It will be 
appreciated that (much) repeated computation can be saved by storing these three 
derived tensors whilst tracking the particles history. 

1A
t '' tt ∆+

2f

The dissipation functions  and can now be computed from Eqs.6-9, and Eq.3 can 
be integrated over any time t , allowing 

1g 2g
'' ', ttf  to be calculated. We employ an 

adaptive fourth order Runga-Kutta method to integrate Eq.3.  
( )2

)
( )2

'

( )2

3.3.2 Adaptive computation point selection 

The direct computation of  for every point indicated by the time-stepping 
criteria can be prohibitively slow. We use an adaptive method whereby  is 
computed for a number of values of t , with linear interpolation  over the interval 
between these values; it is first checked (by a computationally inexpensive method) 
that linear interpolation is accurate over an interval; if not then a new point is 
calculated between them by direct integration of Eq.3. This continues (recursively) 
until all intervals have been verified. 

( ',2 ttf
', ttf

The process begins by selecting a number of values of 't  for direct computation of 
. We select values closest to each the time constants, ',ttf iλ , in the memory 

function, and also the values closest to i , and iλ  to give an approximately 
even spread in a logarithmic sense  (assuming there is a factor of 10 between adjacent 

iλ ). The points representing the largest value of s recorded during ‘backtracking’, and 
the point representing  must also be selected to give full coverage for 
interpolation. For the memory function data used, with 8 relaxation times from ~10-4 
to ~103 this gives an initial spread of around 25 ‘seed’ points, t0, t1, t2, t3, .. as shown 
in Figure 4. 

λ×2 ×5

tt ='

( )2 ( )2

To make checking computationally inexpensive, the adaptive method checks the 
interpolation across an interval by evaluating linear interpolation across two intervals; 
this interpolation can be compared with the point in between that has already been 
computed by direct integration. Initially the interval between t0 and t1 is checked: the 
values of  and  are used in linear interpolation to give an estimated 

value of , which we write as 
0, ttf

( )1
2 ,ttf

2, ttf

1,ttf . If it is found that: ( )2ˆ

 ( ) ( ) ε≤− 1
2

1
2 ,,ˆ ttfttf ,      (17) 
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where ε  is the permitted error, then the interval t0 to t1 is deemed resolved by linear 
interpolation, and checking proceeds to the next interval (t1 to t2). If the criterion is not 
met, then a new point, t1a is deemed necessary between t0 and t1; the nearest storage 
point to the mid-point is used. The value of attf 1, is then calculated by direct 
integration, and the checking proceeds to checking the interval between t0 and t1a. 
This continues recursively until all intervals between direct integration points have 
been verified. 

( )2

The final interpolation is, of course, performed using adjacent values. For the 
contraction flows studied, a value of 0.05 for ε  was found to give insignificant 
difference in computed stresses, compared with stresses computed using every point. 
This strategy of checking by interpolation across two existing intervals avoids 
additional (expensive) direct computations of , unless shown necessary. The 
efficiency of the adaptive method is suggested by the variation in the number of 
points added in simulation. In contraction flow, the method typically adds an average 
of around 100 direct integration points; many fewer (~10-40) for particles wholly in 
the ‘quiet’ upstream region, and many more (~300-3000) for particles passing the lip, 
or in the vortex. The adaptive method reduces our overall simulation time by a factor 
of over 20, compared with direct integration at every point. 

2f

 
3.3.3 Stress integration 
With the value of  available at each stored point (by linear interpolation unless 
directly computed), there remains only the computation of . This is 
straightforward as  is stored for all points, and Currie’s approximation can be 
used as outlined in section 3.3.1. The time-integration of Eq.1 may then be performed 
using the Gauss-Legendre derived weights that were stored during ‘backtracking’. 

( ',2 ttf

( ',tt1F−

)
)

)
( ', ttDES

 
3.4 Updating the flow fields 
The velocity and pressure field update scheme we use is based upon that of 
Viriyayuthakon and Caswell [37]. The method we use here contains a small, but 
valuable, modification to the method detailed in ref [5]. For context, we summarise 
the method given in [5]. 
 
For an assumed steady-state flow, with negligible inertia and body-forces, we require: 
 
 ,       (18) ( ) 0=−⋅∇ pIτ v

 
where  are the viscoelastic extra-stresses computed using Eq.1, and p is pressure. 
We add notional Newtonian stresses, 

vτ
( )Tkk +µ  to each side of the equation, and 

rearrange to give: 
 
 ( )( )[ ] ( )( )[ ]NNp T

v
T kkτIkk +−⋅∇=−+⋅∇− + µµ 1  ,   (19) 

 
where the subscripts imply that the viscoelastic and Newtonian stresses from iteration 
N, are used to give a body force for the N+1th flow solution. The iterative procedure 
begins with an initial Newtonian flow solution, and proceeds until convergence is 
attained.  The value of µ that is used is important, we use 0µωµ = , where 0µ is the 
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numerically predicted value of low shear viscosity, given by ∑= ii gλµ0 , and ω  is a 
scalar. Viscoelastic stresses can be much higher than notional Newtonian stresses 
given by the low shear viscosity, due to strain hardening and stress convection. If ω  
is too small, the resistance to change in the velocity field is insufficient (as the 
notional Newtonian stresses are too small compared with the viscoelastic stresses), 
and the possibility of good convergence is lost. If ω  is too high, the rate of 
convergence is reduced, also the final level of convergence that is achieved is reduced 
(when the direct damping effect of ω  on velocity is accounted for in the convergence 
measure). 

ω

)]k
Tτ⋅∇

<r

×

 
 Previously we have chosen a suitable value of ω  for a flow-rate, and proceeded with 
one solution of Eq. 19 per stress computation; values of  of up to 60 were needed at 
the highest flow rates for good convergence, and convergence can be very slow. A 
more efficient method is to use m sub-iterations of the flow solution method via: 
 
 ( )( )[ ] [ ] ([Nkp v

T kkIkk +⋅∇−=−+⋅∇− + µµ 1   (20) 
 
where the subscripts imply that sub-iteration k gives the notional Newtonian stresses 
that are used to calculate the k+1th sub-iteration flow solution. Initially m is set equal 
toω . The number of sub-iterations is maintained at m for a number of viscoelastic 
stress iterations until it is detected that further useful progress has ceased (see later); at 
this point m is halved (to nearest integer). These stepped decrements continue until m 
= 1.  
 
The advantage of the procedure is much faster convergence rate. This appears to 
happen by allowing features which are usually slow to reach convergence (e.g. 
correction pressure) to progress quickly towards their approximate final values when 
m is large. More sensitive features such as vortex angle tend to oscillate (greatly) 
during this phase. As m falls, the oscillations in the more sensitive features fall to fine 
detail level. Oscillations in the ‘outputs’: vortex intensity, vortex angle, correction 
pressure, and vortex area were monitored by the code. The time to halve m was taken 
to be when each of these outputs had arrived at a value that had been ‘crossed’ three 
times during that value of m (indicating oscillation about the solution point). In most 
instances, the ‘outputs’ listed had settled to four significant figures in the simulations 
reported. 
 
 A minimum convergence of  was obtained for all MSF with CCR 
simulations in  this work (where Vr is the maximum change in any velocity 
component over a full viscoelastic stress iteration, N to N+1, (explicitly not over a 
sub-iteration) divided by the maximum flow velocity). Similarly the relative change in 
pressure was always better than 4 . Both of these convergence figures are 
significantly better than those obtained for the earlier fit-function MSF model [10] (by 
factors of 5 for velocity, and 20 for pressure). These comparisons have been checked 
using the same mesh, material, flow-rates, software, and time-stepping criteria and 
indicate that it is the MSF with CCR model that is giving better convergence. The 
most obvious differences in prediction between the MSF with CCR model and the 
earlier fit-function MSF model is that the earlier model gives high shear viscosity and 

4102 −×Vω

410−
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first normal stress difference, N1. This suggests that the lower shear predictions, given 
by the MSF with CCR, are resulting in improved convergence behaviour. 
 
4. Simulation procedure 
 
The MSF model with CCR was applied to a 5.75:1 axisymmetric contraction flow, 
and a 8:1 planar contraction flow. Experimental data for vortex opening angle is 
available for the former geometry [29]. Both the original constraint release 
formulation, ‘MSF model CR1’, and the modified formulation, ‘MSF model CR2’ 
were applied to the flows, along with the earlier fit-function MSF model [10], which 
we refer to as ‘MSF without CCR’, for comparison. Simulations were performed 
using relaxation data for 160°C; solutions were obtained at apparent shear rates of 
0.125 s-1, 0.25s-1, 0.5s-1 ,  ... continuing in factors of two whilst convergence was 
satisfactory.  A convergence value of  was required for the ‘MSF 
without CCR’ model; the convergence of the CCR models was found to be 
significantly better allowing the tighter requirement: . 

3101 −×<rVω

Vω 4102 −×<r

 
4.1 Application to 5.75:1 axisymmetric contraction flow 
 
The models were used with rheological data and parameters for IUPAC LDPE at 
160°C. White and Kondo made measurements for several brands of LDPE (including 
IUPAC) at several temperatures, and showed that all of these results formed a single 
curve, when plotted against the fully-developed downstream wall Stress Ratio. This 
ratio, Sr, is given by : 

 
w

NSr
τ2
1

=  ,        (21) 

 
where N1 is the first normal stress difference at the wall, and wτ is the shear stress at 
the wall. 
 
The experimental results of White and Kondo are compared with the three models in 
Figure 5. MSF model CR2 is seen to show a strong rise in opening angle with Sr, and 
whilst there remains a difference in rise-rate, the strong growth is similar to the 
experimental data. The largest opening angle obtained is 51 degrees at a value of Sr of 
2.3. MSF model CR1 falls well below the experimental data giving a peak of 32 
degrees at Sr = 1.9. The fit-function MSF model, ‘MSF without CCR’, is notably 
‘late’ when represented in this way. A peak of 44 degrees is obtained, but at Sr = 10.7. 
The ‘lateness’ may be attributed to the over-prediction of N1 in shear by this model, 
which gives over-prediction of Sr at a given wall shear rate. MSF model CR2 clearly 
gives the best quantitative and qualitative behaviour against this experimental data. 
 
For interest, the vortex intensity given by the models is shown in Figure 6. The vortex 
intensity is defined as the ratio of the volumetric flow rate in the vortex, to the 
volumetric flow rate passing through the die.  All three models show a peak at an 
apparent shear rate of around 10s-1, with CR2 giving a much stronger vortex than 
CR1. The ‘MSF without CCR’ is seen to be more similar to model CR2 when plotted 
against apparent shear rate. Figure 7 shows the contours of streamfunction for the 
three models at an apparent shear rate of 32s-1 (a rate at which model CR2 is very 
close to the experimental data). The contours in the vortexes are plotted at integer 
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multiples of 1% vortex intensity and show the generally stronger vortex behaviour of 
model CR2. 
 
Figure 8 plots the entrance correction pressure for the three models. Model CR2 gives 
higher correction pressure than model CR1 as the flow rate rises, as might reasonably 
be expected as (as will be shown directly) it gives greater strain-hardening in ‘mixed’ 
elongational flow. Both curves are higher than that of the MSF without CCR model. 
 
4.2 Application to 8:1 planar contraction flow 
 
Experimentally, pronounced vortex growth with increasing flow rate is well 
established for planar contraction flows of LDPE, for example ref. [38] shows 
opening angles in excess of 50° at high flow rates. Figure 9 shows the opening angles 
obtained by simulation. Model CR1 rises to a peak of 34 degrees at an apparent shear 
rate of 256 s-1, whereas model CR2 rise more strongly to a highest value of 47 degrees 
at the same rate. The ‘MSF without CCR’ model approximately follows the line of 
model CR2,  until an apparent shear rate of 64s-1, after which satisfactory convergence 
wasn’t obtained. Figure 10 shows the contours of streamfunction for the three models 
at an apparent shear rate of 32 s-1. Contours in the vortexes are plotted at integer 
multiples of 0.2% for these flows. Model CR2  gives the strongest vortex, but perhaps 
more significantly, it is the only model giving the pronounced vortex ‘bulge’ found  in 
experimental visualisation experiments (see ref. [38]). The evolution of the vortex, 
with growing flow rate, can be seen in figure 11. 
 
Figure 12 Shows the vortex intensity obtained using the three models. These follow a 
similar pattern to their axisymmetric counterparts, with increasing intensity obtained 
in the order CR1, ‘MSF without CCR’, and CR2. The peaks are lower, at 1.6% for 
CR2, and are at approximately four times the apparent shear rate compared with the 
5.75:1 axisymmetric contraction. This suggests they occur at comparable levels of 
elongation rate in both geometries. Figure 13 gives the correction pressures for the 
flow. Again models CR1 and CR2 follow a similar path, with CR2 rising more steeply 
at high rates, as can be expected from the greater strain-hardening. 
 
An important effect on stress of the three models is illustrated by Figure 14. This 
shows contours of the Principal Stress Difference (PSD) for the 8:1 planar contraction 
flow at an apparent shear rate of 32s-1. Comparing models CR1 and CR2 reveals 
clearly higher stress levels (~30%) from CR2, despite their constant rate viscometric 
responses being difficult to separate. This demonstrates the effectiveness of model 
CR2 in isolating large values of , that are induced by elongational flow, from heavy 
dissipation by rotational flow. Detailed examination of the centre-line stresses reveals 
them to differ by only a few percent. The flow along this line is irrotational, but it is 
not constant rate; as the rate changes then 

2f

tdAd  is non-zero, and thus 
 is non-zero – giving a slight difference between CR1 and CR2 in this 

region. The ‘MSF without CCR’ model gives qualitatively different behaviour with 
greatly increased PSD near the downstream wall; the over-prediction of shear-stress 
and N1 with the model seems the clear explanation. 

(2 , ,g 1 2S A A )
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4.3 Effects of finite precision computation of the deformation gradient tensor  
 
In the flows studied (characterised by an abrupt ‘lip’, high apparent shear rates, and a 
longest time constant of 701 seconds), very large deformations need to be represented 
by the deformation gradient tensor, F. In Appendix 1, we deduce a condition number, 
C, which gives the expected error in the determinant of F due to representing the 
components of F to finite precision. The expected error is shown in Appendix 1 to be 
of the order of 

 N

C
10

,         (22) 

where 

 ( θθθθ FFFFFFC xrrxxxrr +=
2
1 )     (23)  

 
(for axisymmetric flow), and N is the number of decimal digits used in the 
computations. The current simulations were performed using 64-bit precision giving 
approximately 16 significant decimal figures, i.e. N≈16. From Eq. 22, the expected 
error in the determinant (due to rounding) is of order 1 for a condition number of 1016. 
For a condition number of 1014, an error in the determinant of order 10-2 is expected; 
this is the order of error in the determinant (5×10-2) that is ‘trapped’ by the software 
and causes it to discontinue back-tracking for that particle. Discontinuing 
backtracking at a point is equivalent to neglecting the strain history of the particle that 
occurred before that point. The current simulation uses a high order integration 
scheme for the computation of F in conjunction with controlled integration time steps; 
also the trace of k is enforced to zero. Condition numbers of F were monitored in 
detail over a full-field stress computation for a particular flow (model CR2 in the 
5.75:1 axisymmetric abrupt contraction flow, at an apparent shear rate of 64 s-1); the 
minimum condition numbers when the situation ( ) 05.01det >−F

110 +n

was encountered 
were ~1013 , with a maximum observed of  ~1014 . Approximately equal numbers 
occurred in each ‘decade’ (in this section the notation “~10n ” is used to imply 
numbers greater or equal to 1 , but less than 1 ). Since an error of order 10-2  
is expected in the determinant of F at a condition number of 1014, the accuracy of the 
computation of F in the simulations is seen to approach the expected limit for 64-bit 
representation. 

n10× ×

 
Some numerical experiments were performed to investigate the sensitivity of results 
to the precision of representation of F, and its method of computation. 
 
In the first experiment, the maximum time-step permitted for a single application of 
the Runga-Kutta integration of  F ( It∆ ) was reduced to max 1 50It g∆ ≤ , where is 
the largest eigenvalue of the velocity gradient tensor, k (the “standard” time-step was 

maxg

max 1 5It g∆ ≤ ). This change gave no clear change in the range of condition numbers 
achieved when ( ) 05.01det >−F was encountered (minimum C of ~1013 , maximum C 
of ~1014 , with approximately equal numbers in each decade). 
   
In the second experiment, F was computed using the “standard” time-step, but a 
method was applied to ‘force’ F to have unity determinant after each time step 
(detailed in Appendix 2), for as long as available precision permitted. This method 
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increased the range slightly, with the minimum C of ~1014 , and a maximum C of 
~1015 ; the majority occurred at ~1014 . 
 
In the third experiment, F was computed to 32-bit precision representation (to be 
precise F was computed using the 64-bit method, but after each time-step the 
components of F were reduced to 32-bit precision). On the machine used for 
simulation, 32-bit precision gives approximately 7 significant decimal figures 
( ). With this method the minimum value that the condition numbers reached 
when 

7N ≈
( ) 05.01det >−F was ~104, with a maximum of ~105  ; again these are consistent 

with the predictions of Eq. 22. 
 
The results for vortex intensity, opening angle, and correction pressure from the 
experiments are summarised in Table 1. Opening angles are the ‘automated’ opening 
angles detailed in ref. [5], these are slightly below the true (tangential) opening angles 
(by approximately 1/2 degree at 64s-1), but are measured by the software to high 
precision to show any variation.  
 
The results demonstrate considerable robustness, with negligible variation to the 
graphical scales of Figures 5, 6, and 8. With 32-bit precision, the computation of F 
was discontinued at values of C of only ~104 to ~105, even with this drop in precision, 
the results vary very little (the levels of convergence that were obtained were reduced 
by a factor of over 2, a major contributor is likely to be ‘chance’ variation in how 
much history was measured for a particle, from iteration to iteration). Even with 32-
bit precision representation, only those particles originating near the downstream wall, 
or in the vortex, were affected.  
 
A likely reason for the insensitivity of results comes from consideration of the 
relationship between time, and stress contributions from the different time constants 
used to represent the memory function. Luo and Tanner [22] demonstrated that 
different time constants contribute most strongly to the overall stress at different 
deformation rates (an approximate inverse relationship is notable between the 
deformation rate and the ‘dominant’ time constants). Figure 15 shows how different 
time constants contribute to the total uniaxial elongational viscosity at different 
elongational rates (for model CR2 at the simulation temperature of 160°C). The 
deformation rates in contraction flow with an apparent shear rate of 64s-1 can be 
expected to be predominantly in the range 100 to 102 s-1; from Figure 15 the greatest 
contributions to stress in this deformation rate range come from the time constants of  
7.01×10-2 s, 7.01×10-1 s, and 7.01×100 s. With 64-bit precision computation, the 
tracking time  had normally exceeded 1000 seconds if the determinant limit was 
reached (with ‘standard’ integration); this time represents many multiples of the 
‘dominant’ time constants, and is sufficient for accurate computation of stress 
contributions from all time constants up to 70.1 seconds. With 32-bit precision, the 
comparable figure for tracking time was around 100 seconds, which is sufficient to 
integrate all of the ‘dominant’ time constants accurately, with significant error 
expected in only the two longest time constants (the contributions from these time 
constants can be seen to be much lower than contributions from the dominant time 
constants at the characteristic deformation rates). This explains why the results 
obtained using 64-bit precision are very insensitive to the changes in the method used 
to compute F – all stress was well ‘resolved’, except for the stress due to the longest 
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time constant of 701 s, and this time constant is seen to contribute a very small 
fraction of overall stress for deformations around 100 to 102 s-1. With 32-bit 
computation all time constants except the longest two are well-resolved; however 
these two time constants contribute very much less than the ‘dominant’ time constants 
(at the characteristic deformation rates of the flow), and the main features of the flow 
are captured with good accuracy, although with reduced convergence. 
 
5. Discussion and Conclusions 
 
The Molecular Stress Function Model with Convective Constraint Release is clearly a 
very significant step in rheological modelling. Within the confines of only two 
adjustable parameters, the steady-state shear viscosity, first normal stress difference, 
and both planar and uniaxial transient elongational data may be fitted for a strain-
hardening polymer melt. The derivation from energy-balance considerations is based 
upon first principle physics, with a small number of assumptions. The two dissipative 
functions and effectively isolate rotational and elongational 
effects, and give almost complete independence to the control of energy storage in 
purely elongational or purely shearing flow. 

( )1g , 1S A (2 , ,g 1 2S A A )

 
Upon application to a complex flow, via a finite element simulation, it was found that 
the vortex opening angles were lower than expected. The 5.75:1 axisymmetric 
contraction data from White and Kondo [29], showed clearly larger opening angles. 
The modification in Eq.12 aims to partially isolate the large values of 2f  caused by 
elongational flow, from the rotational content of the flow. As shown, the modification 
fits the experimental opening angle data much better than the original, with an equally 
good fit to the viscometric data. Application to a planar contraction flow showed that 
the modification gives much larger peak opening angles for such flows, in keeping 
with opening angles seen in experiment (e.g. [38]). 
 
In simulation, the relative orientation tensor ( )'', 't tS  is needed to allow the 

stretch (2 , ')f t t  to be computed forwards to the current time, t , from each time , in 
the past. The method given ensures that computation of the deformation tensor need 
only be performed once, using Eq.14; relative deformation gradients between any two 
intermediate times can then be computed by a (simple and fast) matrix-multiplication. 
The relative orientation tensor can be computed from the deformation gradient tensor 
either by direct integration, or by use of Currie’s approximation. Accurate 
computation of the stress is significantly more ‘involved’ than KBKZ-type stresses. 
As with KBKZ type models, time steps need to be moderated for both accurate 
positional tracking, and accurate integration of the memory-function terms. To 
accurately trace 

't

2f it was found necessary to further moderate time-steps to ensure 
that the strain-rate history was well-resolved; if this is neglected both accuracy and 
convergence suffer significantly. The computation of 2f is prohibitively expensive if 
calculated at each stored point. The method described for linear interpolation of 2f  
between direct computation points, coupled to the adaptive computation point 
selection method, reduced our solution-time by a factor of over 20.   
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The linear combination of g ,  and (1 1S A ) ( )2 , ,g 1 2S A A  in the convective constraint 
release mechanism was originally chosen as the “simplest ansatz”, a ‘minimum 
assumption’ continuation that agreed well with experimental results from viscometric 
rheological data. This work shows evidence from comparison of experimental vortex 
opening angle measurements and simulations of complex flows that the linear 
combination causes reduced opening angles, through interaction between the 
rotational component of flow and the large stretches that are caused principally by 
contraction (through  ). The modification to the constraint release term, 
shown in Eq.12, reduces this interaction, giving greatly increased opening angles that 
are quantitatively closer to the data of White and Kondo and, at least qualitatively, 
closer to the large opening angles seen for planar contraction flows. It is of interest 
that two models that give equally good fits to the available viscometric rheological 
data, behave significantly differently in a complex flow containing different modes of 
deformation. The implication for constitutive models is that evaluation against mixed 
deformation mode flow data is desirable in addition to evaluation against viscometric 
measurements.  

( , ,1 2S A A )2g

 
The study of the effect of finite precision on computation of the deformation gradient 
tensor, F, produced some interesting results. The method to compute the tensor by 
direct integration was found to maintain unity determinant until a point approaching 
that at which rounding errors in 64-bit representation would be expected to make the 
determinant alter from unity (judged by a ‘condition number’); the use of finer 
integration time-steps gave no clear increase. A method that should (mathematically) 
‘force’ the determinant to unity was found to fail, as expected, at only slightly higher 
values of the condition number. The results showed considerable insensitivity to 
changes in the computation method of F, even when the representation precision was 
reduced to 32-bit. Consideration of the dominant time constants in the flow leads to a 
likely reason for the insensitivity.   
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Tables 
 

 Vortex 
Intensity 

(%) 

Opening 
Angle 

(degrees) 

Correction 
Pressure 

“standard” integration of F 
( )max 1 5It g∆ ≤  

6.64 50.4 7.38 

finer integration of F 
( )max 1 50It g∆ ≤  

6.61 50.4 7.38 

det(F)=1, enforced after 
standard integration 

6.61 50.3 7.38 

F computed to 32-bit 
precision 

6.58 50.3 7.41 

 
Table 1 Comparison of results obtained using different approaches to computing the 

deformation gradient tensor, F. 
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Appendix 1 Derivation of a condition number that relates rounding errors due to 
finite precision to the expected error in determinant 
 
The expected unit determinant of the deformation gradient tensor, F, can be lost at 
high deformations, due to finite precision of representation. The following deduces a 
condition number that gives a measure of the expected error. The particular case 
analysed is for axisymmetric flow. 
 
Consider a deformation gradient tensor, F, with all components correct to infinite 
precision, and a unit determinant: 
















=

θθF
FF
FF

xxxr

rxrr

00
0
0

F .    

 
As the determinant is unity, then 
  .      ( ) 1=− θθFFFFF xrrxxxrr

Consider now that one of the diagonal terms, (e.g. ) is rounded up or down due to 
using  a finite precision of N decimal digits. Taking the case of rounding down,  is 

changed to  where 

xxF

xxF

xxF ′ ∆−=′ xxxx FF , and where N
xxF

10
~∆ . 

The new determinant is given by: 
( θθFFFFF xrrxxxrr −′ )

)

.       
 
Substituting in the value for  gives a determinant of: xxF ′

( )( θθFFFFF xrrxxxrr −∆− ,      
which is equal to 
 .     ( ) θθθθ FFFFFFF rrxrrxxxrr ∆−−

The error in the determinant is thus  θθFFrr∆− , but as N
xxF

10~∆  then the error in 

the determinant is of the order of 

N
xxrr FFF

10
θθ .        

The same result is found when the rounding of , or  is considered. Accounting 
for  and  in a similar manner gives an total expected error in the determinant of 
the order of  

rrF θθF

rxF xrF

( )
N

xrrxxxrr FFFFFF

10
2
1

θθθθ +
,     

for calculations with N decimal digits. This suggests a useful ‘condition number’, C, 
where 

( θθθθ FFFFFFC xrrxxxrr +=
2
1 ).     

 

The corresponding condition number for planar flow is ( )211222112
1 FFFF + . 
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Appendix 2 Method to adjust the deformation gradient tensor, F, to have a 
determinant of unity 
  
The method to adjust  F to give unity determinant is as follows: 
If the flow is axisymmetric, then Fθθ is altered to its analytical value given by 

( ) ( )trtr '
( )'tr

  where  is the distance from the centreline at the current time, , and 
 is the distance from the centreline at the earlier time, t  (from ref. [22] ). 

Physically this should guarantee that 

( )r t t
'

Fθθ  is greater than zero (it did when tested on 
the 5.75:1 axisymmetric flow). Having performed this modification, the determinant 
of F, d, is calculated. F is then modified to be a ‘unity determinant’ deformation 
gradient tensor ( )  using: F̂
  F̂ Fθθ θ= θ , 

1
2

r̂r rrF F d= , 

  
1
2ˆ

xx xxF F d= ,  
1
2

r̂x rxF F d= , 

 and  
1
2ˆ

xr xrF F d= . 
 
The method alters values in proportion to their existing size; because the direct 
integration method used to compute  F can maintain an accurate determinant until 
machine precision is approached, alterations will be very small until high 
deformation. After this point this method will forcibly maintain unity determinant 
(provided that the determinant has remained positive) until numerical precision is 
insufficient to represent the deformations with unity determinant. 
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Figure 1 Variation of f 2 using different convective constraint release mechanisms in 
shear and uniaxial elongation. Model CR1 uses a1=0.012, a2=0.07; model CR2 uses 
a1=0.012, a2=0.55. Planar elongation gives identical curve to uniaxial elongation to 

graphical scale.
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Figure 2 Comparison of transient experimental data for IUPAC LDPE at 125°C with 

predictions from the MSF model with convective constraint release (constraint release 
model CR1 with a1=0.012, a2=0.07, and CR2 with a1=0.012, a2=0.55) 
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Figure 3 Comparison of steady-state experimental data for IUPAC LDPE at 150°C 
with predictions from the MSF model with convective constraint release (model CR1 

with a1=0.012, a2=0.07 and model CR2 with a1=0.012, a2=0.55) 
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Figure 4 Test for adequate interpolation over the two intervals (initially) t0 to t2.  
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Figure 5 Comparison of experimentally measured opening angles from White and 
Kondo [29], and the opening angles obtained by three MSF based constitutive models 

in a 5.75:1 axisymmetric contraction flow of LDPE 
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Figure 6 Comparison of the vortex intensity obtained by three MSF based constitutive 

models in a 5.75:1 axisymmetric contraction flow of LDPE 
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Figure 7 Contours of streamfunction in a 5.75:1 axisymmetric contraction at an 

apparent shear rate of 32s-1. Contours in the vortex are at integer multiples of 1% 
vortex intensity. 
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Figure 8 Comparison of the correction pressure obtained by three MSF based 

constitutive models in a 5.75:1 axisymmetric contraction flow of LDPE 
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Figure 9 Comparison of the opening angle obtained by three MSF based constitutive 
models in a 8:1 planar contraction flow of LDPE 
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Figure 10 Contours of streamfunction in a 8:1 planar contraction at an apparent shear 
rate of 32s-1. Contours in the vortex are at integer multiples of 0.2% vortex intensity. 
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Figure 11 Contours of streamfunction in a 8:1 planar contraction for the MSF with 
convective constraint release mechanism CR2. Contours in the vortex are at integer 

multiples of 0.2% vortex intensity. The corresponding stress ratios, in order of 
increasing apparent shear rate, are 1.59, 1.88, and 2.44 . 
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Figure 12 Comparison of the vortex intensity obtained by three MSF based 
constitutive models in a 8:1 planar contraction flow of LDPE 
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Figure 13 Comparison of the correction pressure obtained by three MSF based 
constitutive models in a 8:1 planar contraction flow of LDPE 
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Figure 14 Contours of Principal Stress Difference for three MSF based models in a 

8:1 ratio planar contraction flow. Apparent shear rate is 32 s-1; contours are plotted at 
integer multiples of 35 kPa. 
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Figure 15 Spectrum decomposition of uniaxial elongational viscosity from the MSF 
model with convective constraint release (model CR2 with 1 20.012, 0.55a a= = ) for 

IUPAC LDPE at 160°C. The six longest time constants are shown. 
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