114 research outputs found

    Structural Health Monitoring of Composite Airframe

    Get PDF
    Seminario impartido por el Profesor Aliabadi para describir los últimos logros obtenidos en el seno de los grupos de investigación que dirige en el Imperial College de Londres.Design and maintenance of future airframe composite structures is mainly influenced by the requirement to cope with accidental impact damage. The impact detection and identification strategy for existing structures is of primary importance both in structural health monitoring (SHM) and in non-destructive evaluation (NDE) techniques. Accurately detecting and characterizing an impact event based on sensor data leads us towards condition-based monitoring (CBM), where the subsequent damage can then be detected through active sensing strategies. In this talk, SHM techniques based ultrasonic guided wave will be presented for both passive and active SHM system. Application of these methods to complex stiffened panel will be shown through both experimental measurements and finite element simulations.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Numerical recipes of virtual element method for phase field modeling of brittle fracture

    Get PDF
    In this work, a new and efficient virtual element formulation for non-standard phase field model of brittle fracture is presented. A multi-pass alternative minimization solution scheme based on algorithm operator splitting is utilized, which decouples the whole problem into two parts, namely, mechanical and damage sub-problems. The former is treated as elasto-static problem, while the latter one is treated as Poisson-type of reaction-diffusion equation subjected to bounded and irreversibility constraint. To demonstrate the performance of proposed formulation, several benchmark problems are studied and results are in good agreement with corresponding finite element calculations and experimental studies

    A new displacement-based approach to calculate stress intensity factors with the boundary element method

    Get PDF
    The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs). The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has be-come very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM) in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes

    Anti-plane interfacial crack with functionally graded coating: static and dynamic

    Get PDF
    The anti-plane displacement discontinuity method is applied to establish the Fredholm integral equation of the first kind for the orthotropic Functionally Graded Material (FGM) coatings subjected to static/dynamic shears. The shear modulus and mass density are assumed to vary exponentially through the thickness. The static and dynamic fundamental solutions with anti-plane displacement discontinuity are derived for orthotropic FGM coating by using Fourier transform method and Laplace transform method. It has been shown that the transformed fundamental solution with orthotropic coatings has the same order of hyper-singularity as in the static case, i.e. O(1/r2), and the Chebyshev polynomials of the second kind are used to solve the integral equations numerically. The time dependent stress intensity factors are obtained directly from the coefficients of the Chebyshev polynomials with the aid of Durbin’s Laplace transform inversion method. A comparative study of FGM versus homogeneous coating is conducted, and the dependence of the stress intensity factors in the coating/substrate system on the material property (orthotropic) and thickness of coating is examined. Two examples including the static/dynamic loads are given as benchmarks for the numerical methods and application in composite engineering

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4 (62.3 (55.1�70.8) million) to 6.4 (58.3 (47.6�70.7) million), but is predicted to remain above the World Health Organization�s Global Nutrition Target of <5 in over half of LMICs by 2025. Prevalence of overweight increased from 5.2 (30 (22.8�38.5) million) in 2000 to 6.0 (55.5 (44.8�67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic. © 2020, The Author(s)
    corecore