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Abstrat. In this work we explore the use of enrihment funtions embedded into the boundary

element method (BEM) formulation. The main advantage of this approah is the redued additional

degrees of freedom generated ompared to the lassi partition of unity approah. The enrihment

funtions were obtained using the Stroh formalism, a onise formulation whih depends only on the

material properties. Some numerial examples are provided to show the performane of the proposed

approah.

Introdution

The boundary element method (BEM) has been established as a referene disretisation method when

dealing with frature mehanis problems. High auray, stability in providing results for the singular

stress �elds at the rak tips are some of the advantages of the BEM ompared to the more ommonly

used domain disretisation methods suh as the �nite element method (FEM). Over the last 15 years,

FEM has experiened a breakthrough, after the introdution of the partition of unity [1, 2℄, leading to

the so alled extended �nite element method (X-FEM). Solutions obtained with X-FEM ould math

the ones found with BEM [3℄. Later, the partition of unity has also been applied to BEM for isotropi

materials [4℄.

However, in frature mehanis, the most important parameter is the stress intensity fator (SIF).

Di�erent methods have been used, the most ommon are the energy approahes using the J-integral [5℄

or the more general interation integral . These methods an require as muh omputational resoures

as �nding the solution of the frature mehanis problem when using BEM or the extended �nite

element method (X-FEM). Moreover, dealing with 2D or 3D frature problems and/or multiple raks

an make SIF alulation umbersome.

The proposed method in this paper removes the mentioned limitations, sine the SIF will now be

part of the frature mehanis problem, extending the work the authors [6℄ have done for isotropi

materials. By using an enrihment similar to the one employed by Benzley [7℄, it is possible to use

enrihment funtions that span the asymptoti behaviour at the rak tip for a fully anisotropi material

to then inlude the SIF as part of the solution of the frature problem. The same enrihment funtions

obtained in [3℄ are employed. The Stroh formalism was used in these enrihment funtions, whih is a

powerful mathematial formulation.

The impliit enrihment is embedded into a dual BEM formulation, and some numerial examples

are presented to validate the proposed method.

Governing equations

Consider an anisotropi elasti domain Ω, in whih the stati equilibrium equations in the presene of

body fores b are de�ned as

σij,j + bi = 0 (1)

Symmetry applies for the stress and strain tensors, i.e.:

σij = σji (2)

εij = εji (3)



where

εij =
1

2
(ui,j + uj,i) (4)

and ui stands for the displaement on the i-diretion.
The linear onstitutive equations are given by the generalised Hooke's law

σij = Cijklεkl (5)

where Cijkl de�ne the material onstants tensor, satisfying the following symmetry relations

Cijkl = Cjikl = Cijlk = Cklij (6)

that lead to a tensor with only 21 independent omponents for the 3D ase, and 6 omponents in the

2D ase.

Enrihment formulation

Adopting a polar oordinate system (r, θ) with origin at the rak tip, the asymptoti displaement �eld

around a rak-tip in a plane anisotropi domain an be expressed by means of the Stroh formalism

[9℄ as

uj(r, θ) =

√

2

π
ℜ
(

KαAjmB
−1
mα

√

r (cos θ + µm sin θ)
)

(7)

where the summation onvention over repeated indies applies; i,M = 1, 2; α = I, II is related to the

elasti frature modes; and ℜ(·) is the real part of (·); A, B and µ are obtained from the following

eigenvalue problem

(

−C22
−1

C21 −C22
−1

C11 −C21
T
C22

−1
C21 −C21

T
C22

−1

)(

Am

Bm

)

= µm

(

Am

Bm

)

(no sum on m) (8)

with

C11 := C1ij1; C21 := C2ij1; C22 := C2ij2 (9)

Using the same methodology as in [3℄, the displaements terms in Eq. (7) an be rearranged into

the following set of enrihment funtions:

Ψlj(r, θ) =

(

ψIx ψIIx

ψIy ψIIy

)

=

√

2r

π
ℜ
(

A11B
−1
11 β1 +A12B

−1
21 β2 A11B

−1
12 β1 +A12B

−1
22 β2

A21B
−1
11 β1 +A22B

−1
21 β2 A21B

−1
12 β1 +A22B

−1
22 β2

)

(10)

where βi =
√
cos θ + µi sin θ, r is the distane between the rak tip and an arbitrary position, θ is the

orientation measured from a oordinate system entred at the rak tip. Note that these enrihment

funtions are the equivalent of Williams' expansion for the isotropi ase [6℄.

The displaement �eld an be de�ned in a similar fashion as [6, 7, 8℄

uj =

M
∑

a=1

Nauaj + K̃IψIj + K̃IIψIIj (11)

where Na
represents the shape funtion for node a, uaj is a general oe�ient rather than the nodal

displaement, M is the number of nodes, K̃I , K̃II stand for the mode I and mode II elasti SIF, respe-

tively, and they are now part of the solution vetor instead of being alulated after the displaement

solution is obtained. For the numerial disretisation of the frature mehanis problem, the BEM is

used.



Boundary Element Method (BEM)

The BEM has been established as a referene when dealing with linear elasti frature mehanis

problems [10℄. When dealing with frature mehanis problems, the dual BEM framework is usually

applied. In this ase, a new boundary integral equation (BIE) is introdued, in order to avoid the

degeneration of the linear system of equations due to the use of the same BIE to model two overlapping

surfaes (rak surfaes). The displaement BIE and the tration BIE are de�ned as

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x) (12)

cij(ξ)pj(ξ) +Nk

∫

Γ

s∗kij(x, ξ)uj(x)dΓ(x) = Nk

∫

Γ

d∗kij(x, ξ)pj(x)dΓ(x) (13)

where Γ represents the boundaries (inluding raks) of the arbitrary elasti domain Ω, Nk is the

normal at the observation point, u∗ij and p
∗

ij are the displaement and tration fundamental solutions,

while d∗kij and s
∗

kij are obtained through derivation and further appliation of the generalised Hooke's

law on the u∗ij and p
∗

ij kernels, respetively.

Substituting Eq .(11) into Eqs. (12) and (13) yields in

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) +

∫

Γc

p∗ij(x, ξ)K̃lψlj(ξ)dΓ =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x)

(14)

cij(ξ)pj(ξ) +Nk

∫

Γ

s∗kij(x, ξ)uj(x)dΓ(x) +Nk

∫

Γc

s∗kij(x, ξ)K̃lψlj(ξ)dΓ = Nk

∫

Γ

d∗kij(x, ξ)pj(x)dΓ(x)

(15)

where Γc = Γ+∪Γ− stands for the rak surfaes Γ+ and Γ− . Let us remark that strongly singular and

hypersingular terms arise from the integration of the p∗ij , d
∗

rij and s
∗

rij kernels and they are regularised

using the methodology proposed in [11℄, while the weakly singular terms are handled using Telles

transformation [12℄.

The addition of K̃I and K̃II requires two more equations so the linear system of equations an be

solved. The additional equations ome from a restrition in the rak faes, in order to remove the

displaement disontinuity observed at the rak tip. The displaement ontinuity an be enfored as

L
∑

a=1

Naua upper
j =

L
∑

a=1

Naua lower
j (16)

where L is the number of nodes used for the rak tip extrapolation. Eq. (16) is applied for both x
and y diretions, resulting in two di�erent equations per rak tip. Moreover, these shape funtions

have to be evaluated at the rak tip.

Numerial results

Crak in an in�nite anisotropi domain

First, we analyse a rak subjet to a uniform loading in an in�nite anisotropi domain. This problem

has a pure mode I exat solution of KI = σ∞
√
πa, where σ∞ represents the applied loading and a is

the half-length of the rak. The problem is depited in Figure 1.

Table 1 shows the results for a rak disretised with 8 disontinuous elements per rak surfae,

and with the following material onstants given in the Voigt notation: C11 = 137.97 GPa, C12 = 5.78
GPa, C16 = 20.54 GPa, C22 = 12.45 GPa, C26 = 2.30 GPa and C66 = 12.98 GPa. A modi�ed version

of the J-integral has been used for anisotropi materials, for more details see referene [13℄.

The extrapolation method onsists of using the rak opening displaement (COD) and the rak

relative sliding (CRS) to estimate the SIFs. The SIFs are thus given by [14℄

(

KII

KI

)

=

√

π

8r
(ℜ(iAB

−1))−1

(

∆u1
∆u2

)

(17)
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Figure 1: Crak in an in�nite domain under uniform loading.

with r = L/6, and L is the length of the element ontaining the rak tip.

SIF alulation KI = 1 Error (%)

Unenrihed J-integral 1.0256 2.5656
Unenrihed Extrapolation 1.1554 15.5441

Diret SIF 1.0000 0.00115
Enrihed J-integral 1.0001 0.0091

Enrihed Extrapolation 0.9999 −0.00002

Table 1: Results for the rak in an in�nite anisotropi domain.

It is lear that the results obtained with the impliit enrihment are mathing the exat solution.

It is expeted to have higher errors in the SIF extrapolation and the J-integral when no enrihment is

used sine there is no spei� modelling of the asymptoti behaviour at the rak tip in this ase.

Edge rak in a square omposite plate

Next a square plate (h/w = 1) with an edge rak (a/w = 0.5) subjet to a uniform loading is

presented. The plate is a symmetri angle ply omposite laminate onsisting of four graphite-epoxy

laminae. Figure 2 illustrates the problem.

The material properties of the plate are given as: E1 = 144.8 GPa, E2 = 11.7 GPa, G12 = 9.66 GPa
and ν12 = 0.21. The �bre orientation of the plate is rotated from θ = 0◦ to θ = 90◦. Results are given
in Figure 3 and are ompared with the BEM formulation from referene [14℄. The BEM mesh onsists

of 8 disontinuous elements for the external boundaries, plus 8 disontinuous elements for eah rak

surfae.

The error of the extrapolation method for the unenrihed ase ompared to the referene [14℄ is

over 16 %. One an verify that the diret SIF approah, the enrihed extrapolation and J-integral as

well as the unenrihed J-integral present exellent agreement with the referene solution.

Conlusions

An impliit enrihment framework overing anisotropi materials has been presented in this work. The

SIFs have been introdued as additional degrees of freedom straight into the dual BEM formulation,

so when the displaement solution is obtained, so are the SIFs. This tehnique an save preious

omputational time espeially when dealing with a large number of raks. Moreover, only 2 new
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Figure 2: Edge rak plate under a uniform load.
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Figure 3: Results for the normalised mode I in an anisotropi omposite plate.

degrees of freedom are introdued per rak tip, ompared to the partition of unity where every

enrihed node means additional degrees of freedom. The numerial examples show exellent agreement

with exat and referene solutions.
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