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Abstract

In this work, a new and efficient virtual element formulation for non-standard phase field model of brittle fracture is presented. A
multi-pass alternative minimization solution scheme based on algorithm operator splitting is utilized, which decouples the whole
problem into two parts, namely, mechanical and damage sub-problems. The former is treated as elasto-static problem, while the
latter one is treated as Poisson-type of reaction-diffusion equation subjected to bounded and irreversibility constraint. To demon-
strate the performance of proposed formulation, several benchmark problems are studied and results are in good agreement with
corresponding finite element calculations and experimental studies.
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1. Introduction

Fracture is a one of the most common failure modes in engineering materials and structures. The prevention of frac-
ture becomes a major concern in engineering design and structural analysis. During the past few decades, researchers
proposed several pathways for analysis of fracture behaviors, which mainly can be generalized into three categories:
theoretical, experimental and computational approaches.

Computational fracture and damage mechanics becomes an indispensable tool for predicting complex crack pat-
terns in solids and structures. Broadly speaking, the modeling of fracture and damage behaviors can be classified
into two families, i.e., continuity (smeared) and discontinuity (discrete) approaches De Borst (2022). Recently, a new
smeared approach called variational phase field modeling of fracture came into pictures Francfort and Marigo (1998),
which is rooted in Griffith’s energetic theory of brittle fracture. In this method, the crack path is not set forth straight-
forward but described by auxiliary indicators, namely, crack phase field variables Bourdin (2000). The crack phase
field variables and displacement fields are solved via a global minimization procedure of total energy functional, which
includes stored elastic energy, regularized fracture surface energy and external work. The total potential energy is not
always convex for displacement field and crack phase field at the same time, which needs special solution techniques
to deal with, i.e., alternative minimization (staggered) solver Bourdin (2000). Similar to other continuum damage
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models, the numerical implementation is rather simple and straightforward in element based numerical methods, such
as finite element method, virtual element method Beirão da Veiga (2013) and finite difference methods, to name a
few. Recent years, several phase-field fracture formulations has been proposed for brittle Miehe (2010b), cohesive Wu
(2017); Wu and Nguyen (2018), ductile Ambati (2015b), dynamic Borden (2012); Mandal (2020) and multi-physics
Miehe (2015a,b); Mandal (2021); Martı́nez-Pañeda (2018) fracture, interested readers may read the review article Wu
(2020) for more details.

From an effective numerical discretization point of view, the common numerical method for phase field modeling
of fracture is undoubtedly finite element method (FEM). Recent years, several novel numerical methods came into
picture, such as meshfree method (MFM) Belytschko (1994), material point method (MPM) Sulsky (1994) and virtual
element method (VEM) Beirão da Veiga (2013), to name a few. As a new and effective numerical method for solving
partial different equations (PDEs), the virtual element method evolved from mimetic finite difference (MFD) method,
which can be a generalization of finite element method. Unlike FEM, the weak form in such method is decomposed
into two parts, namely, consistency and stabilization terms. As its name suggests, the terminology “virtual” means that
the calculation of shape functions does not need to access the information inside the element but only use the degree
of freedoms (DOFs) Beirão da Veiga (2014). The advantage of VEM over FEM can be generalized as: (1) No Gauss
integration is needed for computing the element stiffness matrix, which bypasses the issues of badly approximation
for the poor quality of element topology as in (polygonal) finite element method. (2) Arbitrary type element can
be used for numerical simulation, including (non-) convex 2D polygonal and 3D polyhedral elements. (3) Adaptive
mesh refinement becomes rather simple since the nodes within elements can be altered during the simulation process.
Therefore, there is no extra effort to deal with the appearance of hanging nodes when changing the topology of
elements as in FEM.

Recently, VEM has been successfully applied to solve fracture mechanics problems. Nguyen-Thanh et al proposed
an efficient VEM formulation for solving linear elastic fracture mechanics problems Nguyen-Thanh (2018). Aldakheel
et al proposed an efficient virtual element formulation for solving standard (AT2) phase field modeling of brittle
Aldakheel (2018) and ductile fracture Aldakheel (2019) under quasi-static loading. Hussein et al presented a VEM
based cutting technique with adaptive phase field modeling of fracture to predict the crack path in brittle solids Hussein
(2020). Liu et al proposed an explicit virtual element formulation for phase field modeling of dynamic fracture Liu
(2023).

In this work, a new virtual element formulation for non-standard (AT1) phase field modeling of brittle fracture is
proposed. A multi-pass alternative minimization solution scheme is utilized to decouple the whole problem into two
parts, the mechanical and damage sub-problems, which can be solved in a staggered manner. The former is regraded
as elasto-static equation Beirão da Veiga (2015), while the latter one is treated as Poisson-type of reaction-diffusion
equation Beirão da Veiga (2016) subjected to bounded and irreversibility constraint. The difference in this work from
Aldakheel (2018) is outlined in Table 1. Two benchmark problems are prsented, and the results are compared with
corresponding FEM calculations and reference results.

Table 1: Difference of setting up in this work from Aldakheel et.al

Setting This work Aldakheel (2018)

Time stepping Multi-pass staggered scheme One-pass staggered scheme

VEM stabilization scheme Nodal based stabilization
Hybrid FEM-VEM

(Energy-based) stabilization

Damage irreversibility constraint Bounded constraint optimization solver History field

Crack geometry function AT1 AT2

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2023.12.074&domain=pdf
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be used for numerical simulation, including (non-) convex 2D polygonal and 3D polyhedral elements. (3) Adaptive
mesh refinement becomes rather simple since the nodes within elements can be altered during the simulation process.
Therefore, there is no extra effort to deal with the appearance of hanging nodes when changing the topology of
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Recently, VEM has been successfully applied to solve fracture mechanics problems. Nguyen-Thanh et al proposed
an efficient VEM formulation for solving linear elastic fracture mechanics problems Nguyen-Thanh (2018). Aldakheel
et al proposed an efficient virtual element formulation for solving standard (AT2) phase field modeling of brittle
Aldakheel (2018) and ductile fracture Aldakheel (2019) under quasi-static loading. Hussein et al presented a VEM
based cutting technique with adaptive phase field modeling of fracture to predict the crack path in brittle solids Hussein
(2020). Liu et al proposed an explicit virtual element formulation for phase field modeling of dynamic fracture Liu
(2023).

In this work, a new virtual element formulation for non-standard (AT1) phase field modeling of brittle fracture is
proposed. A multi-pass alternative minimization solution scheme is utilized to decouple the whole problem into two
parts, the mechanical and damage sub-problems, which can be solved in a staggered manner. The former is regraded
as elasto-static equation Beirão da Veiga (2015), while the latter one is treated as Poisson-type of reaction-diffusion
equation Beirão da Veiga (2016) subjected to bounded and irreversibility constraint. The difference in this work from
Aldakheel (2018) is outlined in Table 1. Two benchmark problems are prsented, and the results are compared with
corresponding FEM calculations and reference results.

Table 1: Difference of setting up in this work from Aldakheel et.al

Setting This work Aldakheel (2018)

Time stepping Multi-pass staggered scheme One-pass staggered scheme

VEM stabilization scheme Nodal based stabilization
Hybrid FEM-VEM

(Energy-based) stabilization

Damage irreversibility constraint Bounded constraint optimization solver History field

Crack geometry function AT1 AT2
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Figure 1: Sketch of solid domain Ω with sharp crack Γs (left) and its phase field regularized representation Γd (right)

2. Mathematical foundation

2.1. Phase field model of brittle fracture

As shown in Fig.1, Consider Ω ⊂ Rndim (ndim = 1, 2) as a solid domain, with its external boundary denoted by
∂Ω ⊂ Rndim−1, the outwards normal unit vector to the external boundary is denoted as n. The kinetic and fracture
responses at a point x ∈ Ω and time t ∈ T = [0, T ] can be described by admissible displacement u(x, t) and fracture
phase field d(x, t):

u :
{
Ω × T → Rndim

(x, t) → u(x, t) and d :
{
Ω × T → [0, 1]
(x, t) → d(x, t) with ḋ ≥ 0 (1)

where d(x, t) = 0 and d(x, t) = 1 denote the intact and fully damaged state of the material, respectively. □̇ = d□/dt
represents the time derivative of □. The deformation is measured by the strain field ε(x, t) : Ω × T → [Rndim×ndim ]sym

under infinitesimal strain theory, such as:

ε = ∇symu = sym[∇u] :=
1
2

[
∇u + ∇uT

]
. (2)

The symbol ∇sym(·) denotes the symmetric gradient with respect to spatial coordinates. For the phase field problem,
as shown in Fig. 1(right), the sharp crack topology Γs is regularized by a diffusive phase field d(x) : Γd → [0, 1] over
a localized band Γd ⊆ Ω which is unknown a priori, and its exterior domain Ω \ Γd keeping intact. By introducing
the crack surface density function γ(d,∇d), the sharp crack is regularized by phase field approximation in a purely
geometric context as:

∫
Γd

ψc(d,∇d)dV =
∫
Γd

Gc γ(d,∇d)dV
︸��������������������������������������������︷︷��������������������������������������������︸

phase field regularized crack

≈
∫
Γs

Gc dA
︸������︷︷������︸

sharp crack

(3)
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where ψc(d,∇d) is defined as the accumulated dissipative energy density. Gc is introduced as a fracture toughness per
unit area and γ(d,∇d) can be expressed as:

γ(d,∇d) =
3
8


d
l
+ l|∇d|2


(4)

where l represents the characteristic length scale parameter that controls the bandwidth of the phase field. In this work,
a non-standard (AT1) phase field model is utilized Pham (2009), which has an elastic stage before damage initiation.
The above introduced variables will characterize the brittle failure response of a solid, based on the two global primary
fields and three constitutive state variables, such as:


Global primary variables: U := {u, d}
Constitutive State Variables: C := {ε, d,∇d}

(5)

A mechanical sub-problem and a damage sub-problem can be defined for u and d, respectively. Following the work
of Wu (2017); Wu and Nguyen (2018), one can obtain the weak form for u and d, such as:




Ω

σ : ∇symδudV = δP

Γd

Aδd −Gcδγ


dV ≤ 0
(6)

where P is defined as virtual power associated with external body forces and surface tractions. The inequality in Eq.6
represents the irreversibility of phase field d. The constitutive equations for σ andA can be written as:


σ := g(d)σ̂

A := −g′(d)Â
(7)

where σ̂ and Â represent the effective (undamaged) stress and crack driving force, respectively. For tension dominant
failure, one can choose either spectral splitting in Miehe (2010a) or Rankine splitting in Wu (2017) for computing
the crack driving force Â. g(d) represents the energetic degradation function. In this work, only quadratic degradation
function g(d) = (1 − d)2 is considered.

2.2. Virtual element discretization

In a general 2D polygonal conforming mesh Ωh with a total number of elements nE is considered for the discretiza-
tion of the domain Ω. Each element (need not to be convex) E ∈ Ωh consists of nV nodes (vertices) and its boundary
edge ∂E is defined as e. The symbols hE and |E| denote the maximum length of the edge and area of an element E,
respectively. For j = 1, 2, ..., nV , x j denotes the initial position vector of nodal coordinate in 2D, such as x j =


x j, y j


.

In each element, the vertexes are indexed counterclockwise as plotted in Fig.2, which represents a pentagon element
in 2D. The global virtual spaces for primary variables (displacement, phase field) in Eq.5 can be defined as:
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As shown in Fig.1, Consider Ω ⊂ Rndim (ndim = 1, 2) as a solid domain, with its external boundary denoted by
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responses at a point x ∈ Ω and time t ∈ T = [0, T ] can be described by admissible displacement u(x, t) and fracture
phase field d(x, t):

u :
{
Ω × T → Rndim

(x, t) → u(x, t) and d :
{
Ω × T → [0, 1]
(x, t) → d(x, t) with ḋ ≥ 0 (1)

where d(x, t) = 0 and d(x, t) = 1 denote the intact and fully damaged state of the material, respectively. □̇ = d□/dt
represents the time derivative of □. The deformation is measured by the strain field ε(x, t) : Ω × T → [Rndim×ndim ]sym

under infinitesimal strain theory, such as:

ε = ∇symu = sym[∇u] :=
1
2

[
∇u + ∇uT

]
. (2)

The symbol ∇sym(·) denotes the symmetric gradient with respect to spatial coordinates. For the phase field problem,
as shown in Fig. 1(right), the sharp crack topology Γs is regularized by a diffusive phase field d(x) : Γd → [0, 1] over
a localized band Γd ⊆ Ω which is unknown a priori, and its exterior domain Ω \ Γd keeping intact. By introducing
the crack surface density function γ(d,∇d), the sharp crack is regularized by phase field approximation in a purely
geometric context as:
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where ψc(d,∇d) is defined as the accumulated dissipative energy density. Gc is introduced as a fracture toughness per
unit area and γ(d,∇d) can be expressed as:

γ(d,∇d) =
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(4)

where l represents the characteristic length scale parameter that controls the bandwidth of the phase field. In this work,
a non-standard (AT1) phase field model is utilized Pham (2009), which has an elastic stage before damage initiation.
The above introduced variables will characterize the brittle failure response of a solid, based on the two global primary
fields and three constitutive state variables, such as:


Global primary variables: U := {u, d}
Constitutive State Variables: C := {ε, d,∇d}

(5)

A mechanical sub-problem and a damage sub-problem can be defined for u and d, respectively. Following the work
of Wu (2017); Wu and Nguyen (2018), one can obtain the weak form for u and d, such as:
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σ : ∇symδudV = δP
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Aδd −Gcδγ


dV ≤ 0
(6)

where P is defined as virtual power associated with external body forces and surface tractions. The inequality in Eq.6
represents the irreversibility of phase field d. The constitutive equations for σ andA can be written as:


σ := g(d)σ̂

A := −g′(d)Â
(7)

where σ̂ and Â represent the effective (undamaged) stress and crack driving force, respectively. For tension dominant
failure, one can choose either spectral splitting in Miehe (2010a) or Rankine splitting in Wu (2017) for computing
the crack driving force Â. g(d) represents the energetic degradation function. In this work, only quadratic degradation
function g(d) = (1 − d)2 is considered.

2.2. Virtual element discretization

In a general 2D polygonal conforming mesh Ωh with a total number of elements nE is considered for the discretiza-
tion of the domain Ω. Each element (need not to be convex) E ∈ Ωh consists of nV nodes (vertices) and its boundary
edge ∂E is defined as e. The symbols hE and |E| denote the maximum length of the edge and area of an element E,
respectively. For j = 1, 2, ..., nV , x j denotes the initial position vector of nodal coordinate in 2D, such as x j =


x j, y j


.

In each element, the vertexes are indexed counterclockwise as plotted in Fig.2, which represents a pentagon element
in 2D. The global virtual spaces for primary variables (displacement, phase field) in Eq.5 can be defined as:
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Figure 2: Schematic description of a 2D polygonal element E, xc is the centroid of E


displacement:Vh :=


vh ∈ V : vh|E ∈ Vh|E ,∀E ∈ Ωh


phase field: Qh :=


qh ∈ Q : qh|E ∈ Qh|E ,∀E ∈ Ωh

 (8)

where Vh|E and Qh|E represent the local virtual space for displacement and phase field, respectively. Following the
work of Beirão da Veiga (2013); Gain (2014), a lower order VEM formulation (with linear polynomial) is taken into
consideration. For E ∈ Ωh, the discrete virtual space Qh|E at element level is defined as:

Qh|E :=

q ∈

H1(E) ∩C0(E)


: ∆q = 0 in E, q|e ∈ P1(e),∀e ∈ ∂E


(9)

Qh|E is scalar value-based functional space for the phase field variable d, while the extension towards vectorial space
for displacement field u is straightforward, such as:

Vh|E :=

v ∈

H1(E) ∩C0(E)

2
: ∆v = 0 in E, v|e ∈ [P1(e)]2,∀e ∈ ∂E


(10)

∆ represents the component-wise Laplacian operator. P1(e) represents the polynomial space of degree ≤ 1 defined on
e. Qh|E andVh|E contain the continuous harmonic functions of which piece-wise linear on e and vanishing Laplacian
interior E. The ‘virtual’ means that the space is well defined on the boundary of the element but not explicitly known
inside the element. The spaces Qh|E and Vh|E are linearly complete, suggesting that [P1(E)]2 ⊆ Vh|E and [P1(E)] ⊆
Qh|E . Thus, only the degree of freedom (DOF) forVh|E and Qh|E are taken at the vertices of E.

Providing that, values at DOFs are given and v ∈ Vh|E and q ∈ Qh|E are linear on e, the value of v and q are
completely known on the boundary of E. By virtue of the Gauss divergence theorem and integrating by part, one can
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calculate the integral average of gradient, such as:



1
|E|


E
∇v dV =

1
|E|

e∈∂E


e

v ⊗ ne dS =
1

2|E|

nV
j=1

v

x j


·
e j−1

 nj−1 +
e j

 nj



1
|E|


E
∇q dV =

1
|E|

e∈∂E


e

q ⊗ ne dS =
1

2|E|

nV
j=1

q

x j


·
e j−1

 nj−1 +
e j

 nj


(11)

where |e j| is the length of the j-th edge and nj represents the outward unit normal vector at each edge j. Concerning
the edge indexing, for j = 1 and j = nV , the indexes are denoted as j − 1 = nV and j + 1 = 1, respectively.

VEM relies on the split of primary variable U defined in Eq.(8) into a polynomial space representation UΠ and a
reminder, as

Uh = UΠ + (Uh − UΠ ) with UΠ := {uΠ , dΠ } (12)

where UΠ is obtained by projecting the primary variable Uh onto a polynomial space, in this case, P1. UΠ is defined
element-wise such as UΠ |E = {UΠ ,1,UΠ ,2, ...UΠ ,nV }T|E and guarantees the linear consistency. The remainder term Uh−UΠ
guarantees the stability in VEM. For E ∈ Ωh, the projected primary variables satisfy that:



1
|E|


E
∇UΠ dV

↓
=

1
|E|


E
∇Uh dV,

1
nV

nV
j=1

UΠ (x j)
↓
=

1
nV

nV
j=1

Uh(x j)
(13)

The calculation of projection operators and related procedure to construct the stiffness matrix and mass matrix will
not be addressed here, interested readers may refer to Liu (2023) for further details.

3. Numerical examples

Table 2: Material and model parameters in all simulations.

Parameters Three point bending test L-shaped panel test

Young’s modulus [GPa] 43.6 25.85
Poison ratio [-] 0.2 0.18

Fracture energy [N/mm] 0.1195 0.095
Length scale [mm] 10 3.125

Thickness [mm] 127 100
Crack driving force Rankine splitting Spectral splitting
Strain & stress state Plane stress Plane strain
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Figure 2: Schematic description of a 2D polygonal element E, xc is the centroid of E
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displacement:Vh :=
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phase field: Qh :=


qh ∈ Q : qh|E ∈ Qh|E ,∀E ∈ Ωh
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∆ represents the component-wise Laplacian operator. P1(e) represents the polynomial space of degree ≤ 1 defined on
e. Qh|E andVh|E contain the continuous harmonic functions of which piece-wise linear on e and vanishing Laplacian
interior E. The ‘virtual’ means that the space is well defined on the boundary of the element but not explicitly known
inside the element. The spaces Qh|E and Vh|E are linearly complete, suggesting that [P1(E)]2 ⊆ Vh|E and [P1(E)] ⊆
Qh|E . Thus, only the degree of freedom (DOF) forVh|E and Qh|E are taken at the vertices of E.

Providing that, values at DOFs are given and v ∈ Vh|E and q ∈ Qh|E are linear on e, the value of v and q are
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where |e j| is the length of the j-th edge and nj represents the outward unit normal vector at each edge j. Concerning
the edge indexing, for j = 1 and j = nV , the indexes are denoted as j − 1 = nV and j + 1 = 1, respectively.
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3.1. Three point bending test

In this sub-section, the three point bending test is firstly considered, which is a well-known benchmark problem
for testing the performance of phase field modeling of brittle fracture. The geometry configuration and boundary
conditions are given in Fig.3(a). The notched beam is simply supported at its right end and clamped at its left end.
A vertical displacement u∗y = 0.44mm is applied to the loading platen on the top of the beam, where the reaction
forces are recorded at the same position. The prescribed displacement is equally applied in 100 loading steps, i.e.,
∆u∗y = 0.044mm. The Voronoi mesh for VEM calculation is shown in Fig.3(b), which consists of 14436 elements and
28884 nodes.The mesh is pre-refined within the expected fracture process zone, with a refined mesh size hE ≤ l/5. The
material property and model parameters are given in the second column of Table3, which are considered in Mandal
(2019) and Mosler (2004). The length scale parameter l is considered as material property determined by using 1D
analytical formulation given in Wu and Nguyen (2018). However, the length scale sensitivity study is not considered,
which beyonds the scope of this work.

The ultimate phase field profiles are shown in Fig.5, where FEMQ4, VEMQ4 and VEMVO give identical crack
patterns. The crack initiates at the notch tip and then propagates vertically towards the top of the beam along the
symmetry axis, which behaves a purely mode I crack pattern. The final phase field profiles are in good agreement with
Mandal (2019), in which FEMQ4 is adopted and mesh basis analysis was studied.

Figure 3: Three point bending test: (a): Geometry description and boundary conditions (b): Voronoi mesh for VEMVO.

The reaction force vs applied displacement is shown in Fig.4. The beam exhibits an elastic stage initially and fails
due to the crack initiation at about u∗y = 0.16mm. The loading-displacement curves of FEMQ4, VEMQ4 and VEMVO
are in fairly good agreement with FEM calaulation in Mandal et al. Meanwhile, the loading threshold (26.6∼26.7
kN) is captured identically between VEM and FEM calculation. The result of VEMQ4 gives the identical loading-
displacement response as in FEMQ4, which shows the accuracy of proposed formulation. However, the usage of
Voronoi mesh in VEMVO results in a underestimation of the initial elastic stiffness, this phenomena also exhibits
in Aldakheel (2018) for a standard (AT2) phase field model. The comparison of CPU time as well as memory con-
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Figure 4: Three point bending test: Loading displacement curve via different methods.

Figure 5: Three point bending test: phase field profile at u∗y = 0.044mm. (a): FEMQ4, (b): VEMQ4, (c): VEMVO.

sumption between VEMQ4 and FEMQ4 will not be addressed here, interested readers may refer to Liu (2023) and
Aldakheel (2018) for further reading.
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3.1. Three point bending test
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conditions are given in Fig.3(a). The notched beam is simply supported at its right end and clamped at its left end.
A vertical displacement u∗y = 0.44mm is applied to the loading platen on the top of the beam, where the reaction
forces are recorded at the same position. The prescribed displacement is equally applied in 100 loading steps, i.e.,
∆u∗y = 0.044mm. The Voronoi mesh for VEM calculation is shown in Fig.3(b), which consists of 14436 elements and
28884 nodes.The mesh is pre-refined within the expected fracture process zone, with a refined mesh size hE ≤ l/5. The
material property and model parameters are given in the second column of Table3, which are considered in Mandal
(2019) and Mosler (2004). The length scale parameter l is considered as material property determined by using 1D
analytical formulation given in Wu and Nguyen (2018). However, the length scale sensitivity study is not considered,
which beyonds the scope of this work.

The ultimate phase field profiles are shown in Fig.5, where FEMQ4, VEMQ4 and VEMVO give identical crack
patterns. The crack initiates at the notch tip and then propagates vertically towards the top of the beam along the
symmetry axis, which behaves a purely mode I crack pattern. The final phase field profiles are in good agreement with
Mandal (2019), in which FEMQ4 is adopted and mesh basis analysis was studied.

Figure 3: Three point bending test: (a): Geometry description and boundary conditions (b): Voronoi mesh for VEMVO.

The reaction force vs applied displacement is shown in Fig.4. The beam exhibits an elastic stage initially and fails
due to the crack initiation at about u∗y = 0.16mm. The loading-displacement curves of FEMQ4, VEMQ4 and VEMVO
are in fairly good agreement with FEM calaulation in Mandal et al. Meanwhile, the loading threshold (26.6∼26.7
kN) is captured identically between VEM and FEM calculation. The result of VEMQ4 gives the identical loading-
displacement response as in FEMQ4, which shows the accuracy of proposed formulation. However, the usage of
Voronoi mesh in VEMVO results in a underestimation of the initial elastic stiffness, this phenomena also exhibits
in Aldakheel (2018) for a standard (AT2) phase field model. The comparison of CPU time as well as memory con-
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Figure 4: Three point bending test: Loading displacement curve via different methods.

Figure 5: Three point bending test: phase field profile at u∗y = 0.044mm. (a): FEMQ4, (b): VEMQ4, (c): VEMVO.

sumption between VEMQ4 and FEMQ4 will not be addressed here, interested readers may refer to Liu (2023) and
Aldakheel (2018) for further reading.
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3.2. L-shaped panel test (corner singularity)

In this sub-section, L-shaped panel test is considered, which is a well-known benchmark problem to test the mixed-
mode type of failure Mesgarnejad (2015). The geometry descriptions and boundary conditions are presented in Fig.6
(left), which are adopted from Lampron (2021); Mesgarnejad (2015). The bottom edge of L-shaped panel specimen is
fixed and the vertical displacement u∗ = 1mm is applied as shown in Fig.6 (left), where the reaction force are recorded
at the same position. The prescribed displacement is equally applied in 50 loading steps, i.e., ∆u∗ = 0.02mm. The
Voronoi mesh for VEM calculation is shown in Fig.6 (right), which consists of 47415 elements and 94840 nodes.
The mesh is pre-refined within the expected fracture process zone corresponding to the experimental study Winkler
(2001), with a refined mesh size hE ≤ l/6. The material property and model parameters are given in the third column
of Table3.

The ultimate fracture phase field profiles of L-shaped panel testing are shown in Fig.7(b)(c)(d), where FEMQ4,
VEMQ4 and VEMVO give identical crack patterns. The crack initiates at the corner of the specimen and then prop-
agates with an angle at the very beginning, finally stabilizing its direction horizontally, which behaves a mixed mode
crack pattern. The final phase field profiles are in very good agreement with the experimental study (see Fig.7(a)) and
numerical results in Lampron (2021); Mesgarnejad (2015), in which FEMQ4 is adopted.

Figure 6: L-shaped panel test: Representations of geometry configuration and boundary conditions (left); Voronoi mesh discretization (right).
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Figure 7: L-shaped panel test: phase field profile at u∗ = 1.0mm. (a): Experimental study, (b): FEMQ4, (c): VEMQ4, (d): VEMVO.

Figure 8: L-shaped panel test: loading displacement curve via different methods.
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The reaction force vs applied displacement is presented in Fig.8. The L-shaped panel specimen exhibits an lin-
ear elastic stage initially and fails due to the crack initiation at about prescribed displacement u∗ = 0.28mm. The
loading-displacement curves of FEMQ4, VEMQ4 and VEMVO are in very good agreement with FEM calaulation
in Lampron (2021), which again shows the accuracy of proposed formulation. Meanwhile, the peak load (16.5∼16.7
kN) is captured identically between VEM and FEM calculation. Hoerver, the peak load in Lampron (2021) is slightly
lower than results in this work. This is because a variational consistent phase field model is utilized, while a hybrid
(variational inconsistent) scheme is adopted in this work Ambati (2015a).

4. Concluding remarks

In this work, a new and efficient virtual element formulation is proposed for non-standard phase field modeling
of brittle fracture under quasi-static loading. Such an alternative minimization scheme is suitable for solving phase
field brittle fracture problems implicitly, because the original problem is automatically decoupled into an elasto-
static equation and a Poisson-type of reaction-diffusion equation. A robust bounded constraint optimization solver
based on trust region reflective method Moré (1983) is used for solving damage sub-problem, which guarantees the
upperbound and irreversibility of crack phase field. The performance of the proposed framework is validated by two
representative benchmark problems on different choices of mesh, which indicates that the proposed VEM formulation
has the capability of simulating different failure modes with accuracy, versatility, and efficiency.
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The reaction force vs applied displacement is presented in Fig.8. The L-shaped panel specimen exhibits an lin-
ear elastic stage initially and fails due to the crack initiation at about prescribed displacement u∗ = 0.28mm. The
loading-displacement curves of FEMQ4, VEMQ4 and VEMVO are in very good agreement with FEM calaulation
in Lampron (2021), which again shows the accuracy of proposed formulation. Meanwhile, the peak load (16.5∼16.7
kN) is captured identically between VEM and FEM calculation. Hoerver, the peak load in Lampron (2021) is slightly
lower than results in this work. This is because a variational consistent phase field model is utilized, while a hybrid
(variational inconsistent) scheme is adopted in this work Ambati (2015a).

4. Concluding remarks

In this work, a new and efficient virtual element formulation is proposed for non-standard phase field modeling
of brittle fracture under quasi-static loading. Such an alternative minimization scheme is suitable for solving phase
field brittle fracture problems implicitly, because the original problem is automatically decoupled into an elasto-
static equation and a Poisson-type of reaction-diffusion equation. A robust bounded constraint optimization solver
based on trust region reflective method Moré (1983) is used for solving damage sub-problem, which guarantees the
upperbound and irreversibility of crack phase field. The performance of the proposed framework is validated by two
representative benchmark problems on different choices of mesh, which indicates that the proposed VEM formulation
has the capability of simulating different failure modes with accuracy, versatility, and efficiency.
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