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Abstract 

 The anti-plane displacement discontinuity method is applied to establish the Fredholm 

integral equation of the first kind for the orthotropic Functionally Graded Material (FGM) 

coatings subjected to static/dynamic shears. The Young’s modulus and mass density are 

assumed to vary exponentially through the thickness while the Poisson’s ratio is constant. The 

static and dynamic fundamental solutions with anti-plane displacement discontinuity are 

derived for orthotropic FGM coating by using Fourier transform method and Laplace transform 

method. It has been shown that the transformed fundamental solution with orthotropic coatings 

has the same order of hyper-singularity as in the static case, i.e. )/1( 2rO , and the Chebyshev 

polynomials of the second kind are used to solve the integral equations numerically. The time 

dependent stress intensity factors are obtained directly from the coefficients of the Chebyshev 

polynomials with the aid of Durbin’s Laplace transform inversion method. A comparative 

study of FGM versus homogeneous coating is conducted, and the dependence of the stress 

intensity factors in the coating/substrate system on the material property (orthotropic) and 

thickness of coating is examined. Two examples including the static/dynamic loads are given as 

benchmarks for the numerical methods and application in composite engineering. 
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1. Introduction  

 Coating is a covering that is applied to the surface of an object, usually referred to as 

the substrate. The purpose of applying the coating may be decorative, functional, or both. The 

coating itself may be an all-over coating, completely covering the substrate, or it may only 

cover parts of the substrate. Many industrial coating processes involve the application of a thin 

film of the functional material to a substrate, such as paper, fabric, film, foil, or sheet stock. If 

the substrate starts and ends the process wound up in a roll, the process may be termed "roll-to-

roll" or "web-based" coating. In fiber-reinforced composite materials, coating on fibers is 

widely employed in order to increase the bonding strength between fibers and matrix, and it is 

more reasonable to regard an interface as an interphase layer with finite thickness.  

 The problem of dislocation in the three-phase model has also attracted many investigators’ 

attention, since the obtained solution can be used to study crack growth in composites, as well 

as strengthening and hardening mechanisms in alloyed materials. Functional coatings may be 

applied to change the surface properties of the substrate, such as adhesion, corrosion resistance, 

or wear resistance. In other cases, e.g. semiconductor device fabrication (where the substrate is 

a wafer), the coating adds a completely new property such as a magnetic response or electrical 

conductivity and forms an essential part of the finished product. In the FGMs, the variation of 

the material properties can be pre-determined by controlling the spatial distribution of the 

composition and the volume fraction of their constituents. These materials have been 

introduced in recent years to benefit from the ideal performance of its constituents, e.g. the high 

temperature and the corrosion resistance of the ceramics on one side and the large mechanical 

strength and toughness of the metals on the other side [1,2]. Direct problems of obtaining 

temperature, stresses and displacements in a structure in inhomogeneous materials, such as 

fiber-reinforced composites and FGMs have been studied extensively [3–8].  

 The fracture analysis concerning interfacial zone has become attractive with the application 

of the functionally gradient materials in engineering including different modes of fracture [9-

13]. For anti-plane mode III fracture problem, Zhang and Liang [14] investigated a central 

crack in an inhomogeneous rectangular plane. Shear modulus of the plane varying in the power 

form along one side of rectangle. Afterwards, Zhang [15] studied an isotropic rectangular sheet 

subjected to an anti-plane shear with an edge crack off the center line of a rectangle. The 

problem was solved numerically with a Fredholm integral equation of the second kind using the 

https://en.wikipedia.org/wiki/Fabric
https://en.wikipedia.org/wiki/Roll-to-roll_processing
https://en.wikipedia.org/wiki/Roll-to-roll_processing
https://en.wikipedia.org/wiki/Corrosion_resistance
https://en.wikipedia.org/wiki/Semiconductor_device_fabrication
https://en.wikipedia.org/wiki/Wafer_(electronics)
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Fourier transform and Fourier series. Erdogan et al [16] studied the anti-plane fracture 

problems of two bonded homogeneous half planes with a non-homogeneous interfacial zone. 

By assuming that the medium contains three collinear cracks, the stress intensity factors were 

obtained for some typical crack geometries and material combinations. Jin and Noda [17] 

showed that the crack tip fields in general non-homogeneous materials are identical to those in 

homogeneous materials as long as the material properties are continuous and piece-wise 

continuously differentiable. Jin and Batra [18,19] investigated the interface cracking between 

ceramic and/or FGM coatings and a substrate under anti-plane shear with four coating models. 

For elastodynamic anti-plane fracture problems, a crack at an arbitrary angle to the graded 

interfacial zone in bonded medias was studied under shear impact with shear modulus and mass 

density varying in the form of power functions by Choi [20]. Li and Weng [21] carried out a 

dynamic fracture analysis of a functionally graded interlayer between two coaxial dissimilar 

homogeneous cylinders subjected to impact torque. Two collinear cracks in a bi-FGM structure 

perpendicular to the material gradient direction were investigated, and the influences of 

geometrical and physical parameters on the dynamic stress intensity factor were analyzed by Li 

et al [22] using Laplace and Fourier integral transforms. By using Volterra-type edge 

dislocation, Faal and Dehghan [23] presented the stress analysis for a cracked rectangular sheet 

made of functionally graded material under anti-plane conditions. For anti-plane interfacial 

crack in two bonded functionally graded piezoelectric materials, Hu et al [24] shown that the 

order of singularity of the crack tip stress field and electric displacement is unaffected by the 

discontinuity of the derivative of material coefficients.  

 In this paper, we derived the fundamental solutions of displacement discontinuity for anti-

plane fracture problems and applied them to single layered homogeneous/FGM coatings under 

both static and dynamic loadings. The Fredholm integral equation of the first kind containing 

the displacement discontinuity is formulated to determine the stress intensity factors. As the 

fundamental solutions contain a hyper singular term, the Chebyshev polynomial of the second 

kind is employed to solve the integral equation. The static and dynamic stress intensity factors 

are determined from the coefficients of Chebyshev polynomials with high accuracy. Two 

numerical examples are studied to demonstrate the accuracy and efficiency of the proposed 

formulation for both static and dynamic problems.  
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2. Fundamental solution of displacement discontinuity with coatings  

Due to the coatings are very thin compared with the substrate, we consider a semi-infinite 

substrate boned with a coating of thickness h at its surface as shown in Figure 1(a) and the 

coating-substrate system is subjected to anti-plane shear on the interface crack surfaces. For the 

sake of convenience of analysis, a Cartesian coordinate )(xoy  is selected in Figure 1(a) so that 

the x-axis is along the coating-substrate interface and the y-axis normal to it. These two axes 

are also principal axes of the orthotropic coatings respectively. Figures 1(b) and 1(c) show a 

single layered homogeneous coating and orthotropic functionally graded coating. The shear 

modulus are assumed to vary continuously from B  at the interface )0( y  to L at the surface 

of the coating )( hy  , and 

hy

By e /  , )/(  2

yxyx                (1) 

along y-axis and x-axis respectively, where non-dimensional constant 

 
B

L




 ln                      (2) 

describes the gradient of the shear modulus which is related to the volume fractions of the 

constituents of the coating [19], the parameter   is constant. For homogeneous coating, 

LB   , and for FGM coating, 0 B . The shear modulus of the substrate is 0 .  

2.1. Static Green's function with FGM coating 

 In general, the equilibrium equation, for anti-plane problem, is  

 0









yx

yx


,                   (3) 

where x , y  are shear stresses, and  

 
y

w

x

w
yyxx








    , ,                 (4) 

where w is the anti-plane displacement. Therefore, the governing equation of substrate becomes 

 02  w                      (5) 

and 

 
y

w

x

w
yx
















00   ,  .                (6) 
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Figure 1. Single layered coating with an interface crack and variation of shear modulus through 

the thickness: (a) geometry of interface crack; (b) homogeneous coat; (c) FGM coat. 

 

For the single layered orthotropic FGM model 
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Due to the symmetry about y-axis, the general solutions are given  

 0   cos
2

0

 


 yxdCew y ，


                (9) 

for substrate and 

   hyxdBeAew
yy

 


 0   cos
2

0

21 ，



,           (10) 

 for orthotropic coating, where 

 
hhhh 24

  ,
24 2

2
22
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2
22

1





  ,          (11) 

in which A, B and C are coefficients. For a displacement discontinuity at interface and traction 

free boundary on the surface of coating, the boundary conditions are described as 

 
.     0

0   0   )(
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yxww

y
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              (12) 
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Thus, we have all coefficients 
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            (13) 

Then the displacement and shear stress in substrate are written as 

 0   cos
12

),(
0

 


 yxdeyxw y ，


              (14) 
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2
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It is important to notice that for large value of   we have 
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where 
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Thus, considering Eq.(15), the shear stress in the substrate can be rearranged, same as in-plane 

elasticity by Wen et al [25],  as 
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where h0  should be a large number and 0y . Consider integrals 
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one may obtain the shear stress along the interface which is called as the fundamental solution 

with 
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To evaluate the cosine integral, following formula are used 
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for small value of  z, where )5772156649.0(  is the Euler constant, and for large value of  z 
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In the region  x0 , the function )(G  is regular and can be written as 
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for large value of  . It is obvious that the integral in Eq.(18) is convergent for any value of 0 . 

In addition, the fundamental solution of the shear stress )(xY  in Eq.(20) is of the same order of 

hyper-singularity )/1( 2rO  as that for an infinite plane with isotropic material. However, there 

is a weak singularity of order )ln(r  in the cosine integral function )(Ci z . Assuming that in the 

region )1(22  kk  , Kk ,...,2,1 , the integral function )(G can be interpolated, by using 

a polynomial of second order, as 
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Substituting )(G  into Eq.(20) yields 
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where K2/0 ,  kk . For numerical examples in this paper, these two free parameters 

are selected as 256K  and 200 h  to obtain convergent and accurate fundamental solution 

of shear stress in Eq.(20).  

2.2. Green's function with FGM coating in Laplace transform domain 

 To deal with the anti-plane fracture problem under dynamic load, the Laplace transform 

method is applied. To observe the effect of modulus gradients on the interfacial crack, the same 

material of coating is considered as static case. The equilibrium equation, for anti-plane 

problem,  is  
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where   is the mass density. Therefore, the governing equation for the substrate becomes 
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where 00

2 / c . However, for orthotropic FGM coating 
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Assume that the density of orthotropic coating varies continuously by 
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where B  indicates the mass density of coat on the interface. The governing equation is  
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where 
BBLc  /2  . In this paper, it is assumed that   BLBL // , therefore ccL  . 

Applying Laplace transformation over two sides of Eq.(32) with zero initial condition yields 
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where p is Laplace transform parameter and  

 



0

),,(),,(~ dtetyxwpyxw pt                 (34) 

Again, due to the symmetry about y-axis, the general solutions in the Laplace transformed 

domain are 
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for orthotropic coating, where 
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Considering the boundary conditions for a anti-plane displacement discontinuity at origin on 

the interface 
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gives all coefficients in Eqs (35) and (36) with  
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    (39) 

Similar to static case, the displacement and shear stress in the substrate are given by 
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For large value of  , we have 
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Therefore, the shear stress in the substrate can be written, in the Laplace domain, as 
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Then, the fundamental solution of shear stress along the interface is given 
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In the region 0 , the function ),(
~

pG  is regular and 







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2

2 1~~
),(

~




 OpG  for large 

value of  . therefore, function ),(
~

pxE  is convergent for any large values of 0 . Again, the 

fundamental solution of the shear stress ),(
~

pxY  is of hyper-singularity )/1( 2r  and the cosine 

integral function )(Ci z  a weak singularity of )ln(r .  

 

3. Fundamental solution of strip with GFM coating 

3.1. Static free strip Green's function with FGM coating 
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 Consider a strip of width D with two-free-edges as shown in Figure 2. For an anti-plane 

displacement discontinuity on interface, the boundary conditions can be described as 

 

 

 

 

 

 

 

Figure 2. A displacement discontinuity on the interface in a strip. 
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 hyy       0 ,                   (46) 

  2/     0 Dxxx    . 

By the principle of superposition, the shear stress in substrate can be arranged as 
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where  

 )2(cos)2(cos),,( DkDxkDxxFk   .         (48) 

One can obtain the fundamental solution of shear stress (Green's function) along the interface 

as 
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                        (50) 

where )(G is defined in Eq.(20). Due to the numerical computational process is convergence, 

the number of truncation term in the summation in Eq.(50) is taken to 6.  

3.2. Static simply supported strip Green's function with FGM coating 

 For a simply supported strip with displacement discontinuity on interface, the boundary 

conditions are given as 
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 hyy       0 ,                  (51) 

  2/     0 Dxww   . 

By the principle of superposition, the shear stress in substrate is given by 
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where  

 )2(cos)2(cos),,( DkDxkDxxFk   .         (53) 

The Green's function of shear stress along the interface is obtained as 
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3.3. Green's function for strip with FGM coating under dynamic load 

 Considering interfacial crack with functionally graded coating under dynamic load, the 

shear stress in substrate can be arranged, in the Laplace transform domain, as 

   











 









k

k

y

k

k

y

y dxFedxFepyx
0

0
0

0

0
0 ),,(

2
),,(~

2
),,,(~

0














 




 



Anti-plane interfacial crack with functionally graded coating: static and dynamic                                                        Li, Tian, Wen and Aliabadi 

 - 13 - 

     


























k

k

y dxFeO

0

),,(
1~2

2

2
1

0



 








 ,      (56) 

where function ),,( xFk  is given in Eq.(48) for two-free-edge strip and in Eq.(53) for the 

simply supported strip. Then the fundamental solution of shear stress, in the Laplace transform 

domain, is 

 ),,(
~2

)(

2
),0,,(),,(

~ 00

2

00 pxE
x

pxpxY y 







  


         (57) 

 

 ， )]2(Ci[)]2(Ci[
~

)2(

1

)2(

1
),,()(

1
),,(

~

00

0

2

2

0

2

00

0



 




























k

k
k
kk

k

DkDxkDx

DkDxkDx
dxFGpxE














 

                        (58) 

for two-free-edge strip ( ) and simply supported strip ( ) respectively. 

 It is clear that changing )(G  and 2  in Eqs (50) and (55) with ),(
~

pG   and 2
~  in Eqs (45) 

and (43) results the dynamic fundamental solutions of displacement discontinuity in the 

Laplace space at coordinate )0,( . 

 

4. Integral equation of displace discontinuity for interface crack  

 Consider a anti-plane crack and assume the density of the discontinuity displacement 

 wx)((  ])[  ww on the crack surfaces in the region axa  , where a is the half 

length of crack as shown in Figure 1(a). The integral equation with the density of displacement 

discontinuity on the crack surface can be written as 
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where )(0 x  is specified shear on the crack surfaces. Take the second degree of Hadamard’s 

finite part from the fundamental solutions in Eqs (20), (49) and (54) for static case, the integral 

equation (59) can be rewritten as 
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in which the function )(xE  is of weak singular )(lnrO . It is because that the shear stress is of 

singularity )( 2/1rO  at crack tips ax  , we assume that 
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where kc represents the coefficient, )/( axU k are the Chebyshev polynomials of the second kind, 

i.e. 
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Due to the integral formula given by Kaya and Erdogan [26],  
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where the collocation points ix are chosen as 
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then Eq.(60) at collocation point ix becomes 
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In order to cancel the weak singularity in )( ixE , the coordinate transformation is applied 

simply, i.e. ix  ' . Eq.(65) provides a set of linear system of equations with K + 1 

unknowns kc to be determined. Finally stress intensity factors can be determined directly by 

displacement discontinuity from Eq.(61) as follows 
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From the properties of the Chebyshev polynomials, 1)1(  kU k  and )1()1()1(  kU k

k . 

In the following numerical examples, the free parameter K in Eq.(65) is taken to 9. 

 In the same way, the density of the discontinuity displacement in the transformed domain 

 wpx ~)(,(~  ])~~[  ww on the crack surfaces. The integral equation with the density of 

displacement discontinuity on the crack surface can be written as  
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where ),(~
0 px is transformed shear stress on crack surfaces in the Laplace domain. Considering 

the fundamental solution in Eq.(45) gives 
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Same as static case, we assume that 
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where kc~ denotes the coefficient. Then the integral Eq.(68) at collocation point ix becomes 
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                        (70) 

Finally the stress intensity factors can be determined directly by displacement discontinuity in 

(40) as follows: 
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Selecting (L+1) samples in the transformation space Llpl ,...,1,0 ,  , )(
~

lpf  is evaluated for 

each Laplace parameter from Eq.(70). Thereafter, function )(tf  in the time domain can be 

determined by the Laplace inversion techniques. A simple and accurate method proposed by 

Durbin [27] is adopted as follows 
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where )(
~

lpf denotes the transformed value of function in the Laplace domain, the parameter of 

the Laplace transform is chosen as: Tilpl /)2(   )1( i . In the Durbin's inverse 

formula Eq.(72) there are two free normalised parameters in lp :   and T in the Durbin's 

inverse method. In fact, the parameter T depends on the observing period in time domain and 

 is taken to 5.  
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5. Numerical examples and discussion 

Example 5.1 Interfacial crack in functionally graded media under static load  

 It was mentioned in [19] that in high temperature applications, the coatings are generally 

made from ceramics and their moduli are usually higher than that of the metal substrate. 

However, in some cutting tool applications, the modulus of a coating may be lower than that of 

the substrate. In this observation, a single layered homogeneous coating )( LB   of the 

thickness h and single layered orthotropic FGM coatings )( 0 B  are considered. To compare 

the results with different methods, Figure 3 shows the variations of the SIFs with isotropic 

homogeneous/FGM coatings )1(  versus different parameter  and different ratios ha / . The 

integral equation method was applied in [19] by Jin and Batra for the same problem and the 

results are found to be the same as that by displacement discontinuity approach in this paper 

with both single layered homogeneous and isotropic FGM coatings. It can be found that when 

1 , the SIF with FGM coatig is slightly lower than that of homogeneous coat which 

indicates that, in terms of SIF reduction, the FGM coat is a better alternative to the 

conventional homogeneous coat. However, when 5.0 , the SIF for FGM coat is slightly 

larger with %5  than that of homogeneous coat. But it can be seen that the FGM coatings may 

be still be superior to homogeneous coatings as they usually provide better bonding strength 

between the coating and substrate to reduce thermal residual stresses and higher fracture 

toughness [19]. 

 In general case the composites are anisotropic and the properties of material is directionally 

dependent. Therefore, it is worth to observe the effect of material property on the SIF. Figures 

from 4 to 5 show the results of normalized SIF for both two kinds of coating versus the 

selections of two material parameters   and  . Again, the material of substrate is isotropic. It 

is obvious that when both ratios   and   increase, the SIFs decrease significantly. For all 

cases, when the crack length is very small compared with the coating thickness )1/( ha , the 

normalised stress intensity factors (SIF) tend to unit, which is the same as a interfacial crack 

between two semi-infinite dissimilar plane. For FGM coating, when 2 , it is evident that 

while normalized crack length ha /  increases from zero to 5.0 , the normalized SIFs decrease 

with maximum reduction around 5%. 
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  A strip with a central crack and traction free boundary condition subjected to uniformly 

distributed shear on the crack surfaces is observed too. For the sake of convenience of analysis, 

isotropic FGM coating )1(   is considered with the ratio of 1/ ha . The normalized SIF 

variations versus Da / for two different coatings are shown in Figures 6(a) and 6(b) while the 

parameter  is taken to 0.5, 1 and 2 respectively. In the computational process, the number of 

truncation in summation Eq.(50) is taken to 5. As expected when Da /2  tends to 1 (when crack 

tip is closer to the boundary), the normalized SIF increases sharply due to the effect of free 

traction boundary.  

 

 

 

 

                                 

Figure 3. Normalised SIFs for different ratios of  for homogeneous isotropic coating in solid 

lines and FGM isotropic coating in dashlines. 
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Figure 4. Normalised SIFs for different ratios of  and orthotropic parameters   for single 

layered homogeneous coating. 
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Figure 5. Normalised SIFs for different ratios of  and orthotropic parameters   for single 

layered FGM coating. 
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Figure 6. Normalised SIFs with centered crack in the strip for different ratios of  : (a) 

homogeneous isotropic coating; (b) FGM isotropic coating. 
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Example 5.2 Interfacial crack in functionally graded media under dynamic load  

 Consider a interfacial crack of length 2a between substrate and single layered coating 

subjected to uniformly distributed shear )(0 tH  on the crack surfaces, where )(tH  is 

Heaviside function. The number of sample in the Laplace space are chosen as 200L  with 

two free parameters 20,5  T  in the Durbin's inversion method. Two thicknesses of the 

coating are selected in this example, i.e. ah   and ah 5 . In homogeneous/FGM coatings, 

constant of material 2  and the coefficient   is taken to 0.5, 1 and 2 respectively. There is a 

shear elastic wave with speeds )/( 00 c  in substrate, and )( ccy  , )( ccx   in coat along 

y-axis and x-axis respectively. The normalized stress intensity factors )(tK III  to a 0  for two 

different height ),5( ahah  versus the normalised time act /  are shown in Figures 7(a) and 

7(b) for both homogeneous and FGM coatings respectively. 
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Figure 7. Normalised dynamic SIFs under Heaviside load for homogeneous and FGM coats 

)2(   with different orthotropic parameter )( : (a) ah 5 ; (b) ah  . 

 

 

 

 

 

 

 

 

 

Figure 8. Different traveling paths for elastic shear waves in substrate and coating. 
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 Considering the right tip of crack, the dynamic SIFs are plotted in Figure 7(a) while 

ah 5 and the paths of elasticity shear wave starting from two crack tips are shown in Figure 8. 

The coordinate of the first kink (A) is given by 1/ actA  for 2  )2( ccx   which shows the 

time required for shear waves to travel from one crack tip (left) to the other tip (right) in the 

single layered coating (path 1 in Figure 8). The first kink is thus caused by the arrival of this 

shear wave in the coat although it is not very sharp. The second kink (B) is due to the shear 

wave in the substrate staring from crack tip (left) and traveling to the other tip (right) for all 

ratios of  . It is worth to notice that the time required for shear wave travelling from one tip to 

the other in the substrate is the same, i.e. 2/ actB (path 2 in Figure 8). The coordinate of the 

kink (C) is 4/ actC  for 5.0  which is the time required for shear wave to travel from 

crack tip to the other tip in the coating (path 1 in Figure 8). The kink (D) is obviously due to the 

arrival of the reflected shear wave from the free boundary ahy 5  starting from crack tip 

and the normalized time is 10/ actD  for both homogeneous/FGM coatings due to the speeds 

of shear wave are the same along y-axis )( ccy   (path 3 in Figure 8). However, the next kink 

(E) should be the arrival of the reflected shear wave from traction free boundary ( ahy 5 ) 

starting from the crack tip (left) with normalized time in total aahactE /2/ 22   

198.10 for isotropic coating ( 1 , path 4 in Figure 8). However, for orthotropic coating 

( 5.0 ), this wave requires normalised time about 8.10/' actE  seeing from Figure 7(a) due 

to the material property travelling with speed c . In general, there are lots of kink generated by 

the different shear waves starting (reflecting) from crack tips (free boundary). It is not difficult 

to identify each sharp kink in Figure 7(b) by considering the arrival times for the elastic shear 

waves. In addition, in the case of 2 , the dynamic SIFs with orthotropic FGM coatings 

under shear impact are slightly lower than that with homogeneous coatings. 

 

6. Conclusion 

 Anti-plane fracture problem with interfacial crack between substrate and  homogeneous 

/FGM coatings has been studied by using displacement discontinuity method in this paper. The 

fundamental solutions of displacement discontinuity on the interface are derived for both static 

and dynamic. Also the fundamental solution for a strip with homogeneous and FGM coats are 



Anti-plane interfacial crack with functionally graded coating: static and dynamic                                                        Li, Tian, Wen and Aliabadi 

 - 24 - 

included. The first kind Fredholm integral equation was numerically solved with Chebyshev 

series to determine stress intensity factor. It has been found that when the shear modulus of the 

coating is higher than that of the substrate for both two coats, the SIF is reduced slightly. The 

effect of orthotropic property of the coat on the stress intensity factor is also investigated. It is 

shown that the SIF with larger shear modulus in x-axis direction reduces significantly. Dynamic 

anti-plane fracture problems were studied in the Laplace transformed domain and the Durbin's 

inverse transform method was employed in order to obtain high accurate SIF in the time 

domain. The time dependent stress intensity factors under uniformly distributed dynamic load 

on the crack surfaces demonstrated the effect of elastic shear waves travelling in the materials.  
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