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3 Department of Civil, Materials and Manufaturing Engineering.Shool of Engineering. University of Malaga.Dotor Ortiz Ramos s/n, E-29071 Málaga, SPAINfgsanhez�uma.esKeywords: BEM, Frature, Anisotropi, Enrihment.Abstrat. This paper develops the formulation of the enrihed Boundary Element Method (BEM) forthe analysis of frature appliations in anisotropi materials. The formulation is based in the Partitionof Unity Method (PUM), via the implementation of ad-ho enrihment funtions that desribe thedisplaement �eld in the viinity of the rak tip. Numerial results are presented in order to validatethe enrihed BEM formulation and a omparison with the results obtained using other tehniques isfurther performed and disussed. Namely, both results using the eXtended Finite Element Method(X-FEM) as well as the dual BEM (in ombination with disontinuous quarter-point elements) areonsidered for omparison purposes.IntrodutionFrature mehanis of anisotropi materials has reeived great attention in the latter years due to theinreasing use of suh materials in many engineering appliations. For instane, omposite materialsare widely employed in airraft and spae strutures, automobiles, wind power generators or sportinggoods. When dealing with frature problems, the BEM has been shown as a powerful and e�etivetool in omparison to other omputational tehniques [1, 2℄.In this paper we develop the enrihed BEM formulation for anisotropi frature problems. Tothis end, the PUM [3℄ is implemented in a dual BEM ontext, by extending the formulation previouslypresented for isotropi materials [4℄ to the more general anisotropi ase. The orresponding enrihmentfuntions are derived and further details on the implementation of the enrihed BEM are brie�ydisussed. In partiular, additional olloation points have to be used in order to aommodate theextra unknowns that the enrihment introdues. The formulation is validated by several numerialexamples involving stress intensity fator omputations for mixed-mode raks.Furthermore, we ompare the results of the enrihed BEM with those obtained by alternative nu-merial tehniques: dual BEM implemented in ombination with disontinuous quarter-point elements[2℄ and X-FEM with anisotropi enrihment funtions [5℄. Computational ost and preision of resultsobtained from eah of these methods is disussed to lose the paper.Governing equationsConsider an anisotropi elasti domain Ω, the stati equilibrium equations in the presene of bodyfores b are de�ned as

σij,j + bi = 0 (1)Symmetry holds for the stress and strain tensors, i.e.: σij = σji; εij = εji, where εij =
1

2
(ui,j + uj,i)



The linear onstitutive equations are given by the generalized Hooke's law
σij = Cijklεkl (2)where Cijkl de�ne the material onstants tensor, satisfying the following symmetry relations

Cijkl = Cjikl = Cijlk = Cklij (3)Enrihed BEM FormulationThe boundary element method (BEM) has been established as a referene when dealing with linearelasti frature mehanis problems [1℄, being more aurate and robust than domain disretizationmethods suh as the �nite element method (FEM).In a FEM ontext, the partition of unity [3℄ was applied by Belytshko and Blak [6℄ to apturethe displaements asymptoti behavior around the rak tip, so that the rak is no longer part ofthe geometry, being represented by a set of enrihment funtions at the elements ontaining the rak.This approah is now known as the extended �nite element method (X-FEM) and has been subjet ofresearh in a variety of �elds.The dual BEM is the usual hoie when dealing with frature mehanis problems. It an besummarised by a displaement boundary integral equation (DBIE)
cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x) (4)and a tration boundary integral equation (TBIE), obtained by the derivation of (4) and furthersubstitution in (2)
cij(ξ)pj(ξ) +Nr

∫

Γ

s∗rij(x, ξ)uj(x)dΓ(x) = Nr

∫

Γ

d∗rij(x, ξ)pj(x)dΓ(x) (5)where Γ represents all the boundaries (inluding rak boundaries) of domain Ω; Nr is the outwardunit normal to the boundary at the olloation point ξ; cij is the free term deriving from the CauhyPrinipal Value integration of the strongly singular kernels p∗ij ; u∗ij and p∗ij are the displaement andtration fundamental solutions; d∗rij and s∗rij follow from derivation and substitution into the generalizedHooke's law of u∗ij and p∗ij , respetively. Expliit expressions of the kernels u∗ij , p∗ij , d∗rij and s∗rij aregiven in [2℄.The extended boundary element method (X-BEM) was �rst proposed by Simpson and Trevelyan[4℄ for frature mehanis problems in isotropi materials. The main idea is to model the asymptotibehavior of the displaements around the rak tips by introduing new degrees of freedom. Thedisplaements uh(x) are thus rede�ned as
u
h(x) =

∑

i∈N

Ni(x)ui +
∑

k∈N CT

Nk(x)
∑

α

Fα(x)a
α
k (6)where N and N CT are the sets with nonenrihed and enrihed nodes, respetively, Ni is the standardLagrangian shape funtion assoiated with node i, ui is the vetor of nodal degrees of freedom, and a

α
krepresents the enrihed basis funtions whih apture the asymptoti behavior around the rak tips.In elasti materials, aαk is an 8-omponent vetor for two-dimensional problems, sine only two nodalvariables (u1, u2) and four enrihment funtions are needed to desribe all the possible deformationstates in the viinity of the rak-tip [5℄.In this work, we use the anisotropi enrihment funtions obtained by Hattori et al. [5℄ for theX-FEM:
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√
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where βi = √
cos θ + µi sin θ, r is the distane between the rak tip and an arbitrary position, θ is theorientation measured from a oordinate system entered at the rak tip, and A, B and µ are obtainedfrom the following eigenvalue problem:
( −L

−1
M −L

−1

Z−M
T
L
−1

M −M
T
L
−1

)(

Am

Bm

)

= µm

(

Am

Bm

) (no sum on m) (8)with
Z := C1ij1; M := C2ij1; L := C2ij2 (9)Let us emphasize that the anisotropi enrihment funtions an also be used for isotropi materials,sine this is a degenerated ase from anisotropi materials. For more details please refer to referene[5℄. The enrihed anisotropi BEM formulation is similar to the one used by Simpson and Trevelyan[4℄ for isotropi materials. The extended DBIE and the TBIE an be restated as:

cij(ξ)uj(ξ) +

∫

Γ

p∗ij(x, ξ)uj(x)dΓ(x) +

∫

Γc

p∗ij(x, ξ)Fα(x)a
α
kdΓ =

∫

Γ

u∗ij(x, ξ)pj(x)dΓ(x)(10)
cij(ξ)pj(ξ) +Nr

∫

Γ

s∗rij(x, ξ)uj(x)dΓ(x) +Nr

∫

Γc

s∗rij(x, ξ)Fα(x)a
α
kdΓ = Nr

∫

Γ

d∗rij(x, ξ)pj(x)dΓ(x)(11)where Γc = Γ+∪Γ− stands for the rak surfaes Γ+ and Γ−. In this work, only the element ontainingthe rak tip reeives the enrihment funtion. Thus, if the element does not belong to the rak tipthe dual BEM formulation is the same as stated previously in Eqs. (4) and (5). Let us remind thatstrongly singular and hypersingular terms arise from the integration of the p∗ij , d∗rij and s∗rij kernelsand they are regularised in the same way as shown in [2℄.Numerial resultsIn this setion we ompare the numerial results from the extended BEM, the dual BEM with quarter-point elements [2℄ and the X-FEM. For validation purposes, we will fous on isotropi materials fornow.The Stress Intensity Fators (SIF) are alulated di�erently for eah method: for the X-BEM, aJ-integral is arried out; for the quarter-point dual BEM, a diret extrapolation is performed from thedisplaements at the rak tip; and for the X-FEM, the interation integral is used [2, 4, 6℄.Edge rakFigure 1 illustrates a square plate (h/w = 0.5) with a single edge rak of length a under a uniformloading σ. The size of the rak is de�ned by a/w = 0.5. Results for the X-FEM are obtained usingtopologial and geometrial enrihment, with a �xed area of re/a = 0.2. For more information aboutboth adopted enrihment types please refer to [5℄ for instane.For the dual BEM and the X-BEM a 10 ontinuous quadrati element per side mesh was used.The rak is disretized with 10 disontinuous elements. The dual BEM presents a quarter-point inthe element at the rak tip, while the X-BEM presents an enrihed element. Figure 2 illustrates theSIFs obtained from all the ompared numerial approahes. The number of elements is given for theX-FEM only. The normalized mode I referene is taken from [7℄.It is evident that the BEM solutions are more aurate than both solutions obtained with di�erentenrihment types.Centered rakA retangular plate h/w = 2 with a entered rak of length 2a under a uniform loading is representedin Figure 5, where two di�erent θ values were evaluated: θ = 0o and θ = 45o. The size of the rak is
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Figure 1: Edge rak problem.
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a/w = 0.5 in both ases . The BEM meshes present 6 quadrati elements per side, and 10 disontinuouselements at the rak.Figure 4 shows the mode I for the dual BEM, X-BEM and X-FEM, this latter with several resultsaording to the used number of elements per side. Referene [8℄ was employed to validate the numerialresults. It is evident that the dual BEM and the X-BEM approahes present better auray than theX-FEM approah.
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Number of elements along edge (X-FEM)Figure 4: Mode I SIFs for the entered rak problem - θ = 0o.Now we analyse a frature problem presenting mixed mode types. Figures 5(a) and 5(b) illustratethe mode I and mode II, respetively, when θ = 45o. The referenes solutions were obtained from thereferene [9℄. In this ase, the best results are obtained with the dual BEM for the mode I, and withthe X-BEM for mode II, while the X-FEM results still onserves a relatively low error.
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