40 research outputs found

    The stellar mass ratio of GK Persei

    Get PDF
    We study the absorption lines present in the spectra of the long-period cataclysmic variable GK Per during its quiescent state, which are associated with the secondary star. By comparing quiescent data with outburst spectra we infer that the donor star appears identical during the two states and the inner face of the secondary star is not noticeably irradiated by flux from the accreting regions. We obtain new values for the radial velocity semi-amplitude of the secondary star, Kk = 120.5 +- 0.7 km/s, a projected rotational velocity, Vksin i = 61.5 +- 11.8 km/s and consequently a measurement of the stellar mass ratio of GK Per, q = Mk/Mwd = 0.55 +- 0.21. The inferred white dwarf radial velocities are greater than those measured traditionally using the wings of Doppler-broadened emission lines suspected to originate in an accretion disk, highlighting the unsuitability of emission lines for mass determinations in cataclysmic variables. We determine mass limits for both components in the binary, Mk >= 0.48 +- 0.32 Msolar and Mwd >= 0.87 +- 0.24 Msolar.Comment: 8 pages, 8 figures, accepted by MNRA

    Tevatron Beam Halo Collimation System: Design, Operational Experience and New Methods

    Full text link
    Collimation of proton and antiproton beams in the Tevatron collider is required to protect CDF and D0 detectors and minimize their background rates, to keep irradiation of superconducting magnets under control, to maintain long-term operational reliability, and to reduce the impact of beam-induced radiation on the environment. In this article we briefly describe the design, practical implementation and performance of the collider collimation system, methods to control transverse and longitudinal beam halo and two novel collimation techniques tested in the Tevatron.Comment: 25 p

    Lineage‐based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models

    Get PDF
    Process‐based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass‐dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species‐level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance‐related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage‐based functional types (LFTs), situated between species‐level trait data and PFT‐level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

    Get PDF
    We present the first results of the Fermilab Muon g-2 Experiment for the positive muon magnetic anomaly aÎŒâ‰Ą(gΌ−2)/2a_\mu \equiv (g_\mu-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ωa\omega_a between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω~pâ€Č{\tilde{\omega}'^{}_p} in a spherical water sample at 34.7∘^{\circ}C. The ratio ωa/ω~pâ€Č\omega_a / {\tilde{\omega}'^{}_p}, together with known fundamental constants, determines aÎŒ(FNAL)=116 592 040(54)×10−11a_\mu({\rm FNAL}) = 116\,592\,040(54)\times 10^{-11} (0.46\,ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both ÎŒ+\mu^+ and Ό−\mu^-, the new experimental average of aÎŒ(Exp)=116 592 061(41)×10−11a_\mu({\rm Exp}) = 116\,592\,061(41)\times 10^{-11} (0.35\,ppm) increases the tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure

    Optical emission mapping of four cataclysmic variables

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DXN002354 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore