167 research outputs found

    A dual functional redox enzyme maturation protein for respiratory and assimilatory nitrate reductases in bacteria

    Get PDF
    Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum-dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems

    Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur

    Full text link
    Vanadium oxide supported on porous clay heterostructures (PCH) catalysts have been synthesized, characterized and evaluated in the selective oxidation of H2S to elemental sulfur. The catalysts were characterized by XRD, adsorption-desorption of N-2 at -196 degrees C, diffuse reflectance UV-vis, H-2-TPR, Raman spectroscopy and XPS. The catalysts with higher vanadium content are more active and selective, exhibiting a H2S conversion close to 70% after 360h on stream with a high selectivity toward elemental sulfur and a low formation of undesired SO2. The catalysts with V2O5 crystallites have shown a higher activity and resistance to the deactivation. The analysis of the spent catalyst has revealed the formation of V4O9 crystals during the catalytic test, which has been reported as the active phase in the selective oxidation of the H2S. (C) 2015 Elsevier B.V. All rights reserved.The authors would like to thank the DGICYT in Spain (Projects CTQ2012-37925-C03-01, CTQ2012-37925-C03-03 and FEDER funds, and MAT2010-19837-C06-05) and project of Excellence of Junta de Andalucia (project P12-RNM-1565) for financial support. A. Natoli thanks to SECAT (Spain) for a grant.Soriano Rodríguez, MD.; Cecilia, JA.; Natoli, A.; Jimenez-Jimenez, J.; López Nieto, JM.; Rodriguez Castellon, E. (2015). Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur. Catalysis Today. 254:36-42. https://doi.org/10.1016/j.cattod.2014.12.022S364225

    Catalytic behavior of NaV6O15 bronze for partial oxidation of hydrogen sulfide

    Full text link
    [EN] Na-containing V2O5 materials have been prepared hydrothermally from gels with Na/V ratios of 0.02-0.26, and calcined at 500 degrees C. The calcined samples have been characterized and tested as catalysts in the partial oxidation of H2S to elemental sulfur. At low Na-contents, V2O5 and NaV6O15 bronze are formed, with the NaV6O15/V2O5 ratio increasing with the Na-content. Pure NaV6O15 bronze is mainly formed from gels containing a Na/V ratio of 0.18. However, NaV6O15 and Na1.164V3O8 are formed from gels with Na/V ratio higher than 0.35. NaV6O15 based catalyst shows high conversion for the oxidation of H2S with a high selectivity into elemental sulfur. These catalysts are more active and stable than pure or Na-doped V2O5 catalysts. V4O9 is observed after reaction in both pure Na-doped V2O5 catalysts but also in NaV6O15/V2O5 mixed catalysts. However, no changes in the NaV6O15 crystalline structure are observed in the Na-promoted catalysts. Accordingly, NaV6O15 crystalline phase is stable for several hours of catalysisat a difference with V2O5. The active sites in V-containing vanadium catalysts are probably V5+-O-V4+ pairs as previously proposed for V4O9 crystalline phase. The best catalytic performances were achieved on V2O5-NaV6O15 mixtures which are transformed into V4O9-NaV6O15 mixtures during the catalytic tests. These catalytic results could be due to the intrinsic physical properties of both phases but also because of the optimal dispersion obtained in the synthesis procedure. (C) 2014 Elsevier B.V. All rights reserved.The authors would like to thank the DGICYT in Spain (Projects CTQ2012-37925-C03-01, CTQ2012-37925-C03-03 and MAT2010-19837-C06-05) for financial support.Soriano Rodríguez, MD.; Rodriguez-Castellon, E.; Garcia-Gonzalez, E.; López Nieto, JM. (2014). Catalytic behavior of NaV6O15 bronze for partial oxidation of hydrogen sulfide. Catalysis Today. 238:62-68. https://doi.org/10.1016/j.cattod.2014.02.030S626823

    Fe2O3 supported on hollow micro/mesospheres silica for the catalytic partial oxidation of H2S to sulfur

    Full text link
    [EN] A family of Fe-based catalysts supported hollow silica mesospheres has been synthesized and tested in the catalytic partial oxidation of H2S to elemental sulfur at 170.180 degrees C, atmospheric pressure and under 300 min of time-on-stream. The characterization of the synthesized catalysts by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra (DRS), H-2-termoprogrammed reduction (H-2-TPR), N-2 adsorption-desorption at -196 degrees C and X-ray photoelectron spectroscopy (XPS) reveals the formation of a catalytic system with high micro- and mesoporosity with high dispersion of the Fe2O3 species. The catalytic results reported high activity in the selective oxidation of H2S, reaching a highest conversion value close to 94% with a selectivity towards elemental sulfur of 98% after 300 min of time on stream (TOS) at 180 degrees C for the HMS-10Fe catalyst. The comparison of Fe-containing HMS (10 wt% of iron loading) with other SiO2-based supports, as a fumed silica (Cab-osil) or a mesoporous silica (SBA-15), presents different H2S conversion values, following the next trend: HMS-10Fe > SBA-10Fe > Cab-10Fe. These results suggest that the use of a support with a narrow pore tend to facilitate the iron dispersion favoring higher conversion rates.The authors wish to acknowledge the financial support provided by the Ministry of Economy and Competitiveness (Spain) (MINECO) CTQ2015-68951-C1-3R y CTQ2015-68951-C3-3R, Junta de Andalucia (Spain) P12-RNM 1565 and FEDER funds. In addition, the authors also thank Fundacao Cearense de Apoio ao Desenvolvimento Cientifico e Tecnologico (FUNCAP) by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) - Processo: PDSE 99999.002602/2014-08.Cecilia, J.; Soriano Rodríguez, MD.; Marques Correia, L.; Rodríguez-Castellón, E.; López Nieto, JM.; Silveira Vieira, R. (2020). Fe2O3 supported on hollow micro/mesospheres silica for the catalytic partial oxidation of H2S to sulfur. Microporous and Mesoporous Materials. 294:1-10. https://doi.org/10.1016/j.micromeso.2019.109875S11029

    Obtaining cloud top height from WRF model vertical profiles: application to the EUSO program

    Full text link
    The objective of the Extreme Universe Space Observatory (EUSO) program is detection and measurement of high-energy particles that reach earth?s atmosphere from space. Clouds at mid and upper levels of the troposphere can interfere with such detection. Therefore, determining cloud top height with high accuracy is crucial to estimating the effect of clouds on these measurements.With this aim, we developed a method to extract that height using cloud temperature via vertical profiles predicted by the WRF model

    Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study

    Get PDF
    AbstractWe aim to evaluate the epidemiology and outcome of gram-negative prosthetic joint infection (GN-PJI) treated with debridement, antibiotics and implant retention (DAIR), identify factors predictive of failure, and determine the impact of ciprofloxacin use on prognosis. We performed a retrospective, multicentre, observational study of GN-PJI diagnosed from 2003 through to 2010 in 16 Spanish hospitals. We define failure as persistence or reappearance of the inflammatory joint signs during follow-up, leading to unplanned surgery or repeat debridement >30 days from the index surgery related death, or suppressive antimicrobial therapy. Parameters predicting failure were analysed with a Cox regression model. A total of 242 patients (33% men; median age 76 years, interquartile range (IQR) 68–81) with 242 episodes of GN-PJI were studied. The implants included 150 (62%) hip, 85 (35%) knee, five (2%) shoulder and two (1%) elbow prostheses. There were 189 (78%) acute infections. Causative microorganisms were Enterobacteriaceae in 78%, Pseudomonas spp. in 20%, and other gram-negative bacilli in 2%. Overall, 19% of isolates were ciprofloxacin resistant. DAIR was used in 174 (72%) cases, with an overall success rate of 68%, which increased to 79% after a median of 25 months' follow-up in ciprofloxacin-susceptible GN-PJIs treated with ciprofloxacin. Ciprofloxacin treatment exhibited an independent protective effect (adjusted hazard ratio (aHR) 0.23; 95% CI, 0.13–0.40; p <0.001), whereas chronic renal impairment predicted failure (aHR, 2.56; 95% CI, 1.14–5.77; p 0.0232). Our results confirm a 79% success rate in ciprofloxacin-susceptible GN-PJI treated with debridement, ciprofloxacin and implant retention. New therapeutic strategies are needed for ciprofloxacin-resistant PJI

    The Spanish Infrared Camera onboard the EUSO-BALLOON (CNES) flight on August 24, 2014

    Get PDF
    The EUSO-Balloon (CNES) campaign was held during Summer 2014 with a launch on August 24. In the gondola, next to the Photo Detector Module (PDM), a completely isolated Infrared camera was allocated. Also, a helicopter which shooted flashers flew below the balloon. We have retrieved the Cloud Top Height (CTH) with the IR camera, and also the optical depth of the nonclear atmosphere have been inferred with two approaches: The first one is with the comparison of the brightness temperature of the cloud and the real temperature obtained after the pertinent corrections. The second one is by measuring the detected signal from the helicopter flashers by the IR Camera, considering the energy of the flashers and the location of the helicopter

    Catalytic abatement of trichloroethylene over Mo and/or W-based bronzes

    Full text link
    [EN] In this paper we present the results of the synthesis, characterization and catalytic behaviour of Mo(W)¿Nb¿V¿O mixed metal oxides bronzes for the catalytic oxidation of trichloroethylene. The catalysts were prepared hydrothermally with different Mo/W/Nb/V/P atomic ratio and heat-treated at 500 and 700 °C. They were characterized by several techniques as N2-adsorption, X-ray diffraction, FTIR, SEM-EDS, temperature programmed desorption, temperature programmed reduction, UV¿vis, Fourier transformed infrared spectroscopy of adsorbed pyridine and 18O/16O isotope exchange. X-ray diffraction patterns (XRD) of samples heat-treated at 500 °C suggest the presence of a semi-crystalline material with a diffraction peak at ca. 2¿ = 22.2°, while XRD patterns of samples heat-treated at 700 °C show the formation of a tetragonal tungsten bronze (TTB) structure. The activity for the catalytic abatement of trichloroethylene strongly depends on the heat-treatment temperature and the catalyst composition. Thus, samples with W/(Mo + W) atomic ratios of 0.25-0.75 and heat-treated at 500 °C are the most active ones. The enhanced activity has been related to the remarkable higher surface area of the catalyst and to the catalyst composition which influences the acid characteristics as well as the reducibility and reoxidation of the catalysts. The importance of the oxygen dissociation on the catalyst surface and the diffusion of oxygen species through the catalyst are also discussed.The authors wish to thank DGICYT in Spain (Project CTQ2009-14495 and CSD2009-00050-CONSOLIDER/INGENIO 2010) and Universitat Politecnica de Valencia for the financial support. N.B.R. acknowledges Catedra Cemex Sostenibilidad (UPV) for a fellowship. M.D.S. acknowledges Universitat Politecnica de Valencia for a fellowship.Blanch Raga, N.; Soriano Rodríguez, MD.; Palomares Gimeno, AE.; Concepción Heydorn, P.; Martínez Triguero, LJ.; López Nieto, JM. (2013). Catalytic abatement of trichloroethylene over Mo and/or W-based bronzes. Applied Catalysis B: Environmental. 130-131:36-43. https://doi.org/10.1016/j.apcatb.2012.10.016S3643130-13
    corecore