856 research outputs found

    Voorkom vliegen, voordat je ze ziet vliegen!

    Get PDF
    Vliegen in de stal zijn hinderlijk en kunnen gezondheidsproblemen bij varkens veroorzaken. Wageningen UR Livestock Research heeft het afgelopen jaar de vliegenoverlast en bestrijdingsmethoden geïnventariseerd op biologische varkensbedrijven. Nu is het onderzoek gericht op het voorkomen en weren van vliegen. Dit bioKennisbericht geeft een overzicht van ontwikkelingsplaatsen van vliegen in de stal en tips om vliegenoverlast te voorkome

    Inclusion of temperature effects in a model of magnetoelasticity

    Get PDF
    In this paper, we report on temperature effects associated with elastic electromagnetic forming by pulsed electromagnetic fields in inhomogeneous, linear, and lossy media. In a previous paper, we discussed the electromagnetic forces associated with these pulsed electromagnetic fields. Here, we calculate the temperature rise from the equation of heat flow in an isolated object to be deformed. The temperature rise is included in the elastodynamic problem to be solved for the presence of electromagnetic forces, and as a consequence the thermoelastic field can be obtained. As an example, we calculate the thermoelastic field in a hollow cylindrical object

    Inclusion of temperature effects in a model of magnetoelasticity

    Full text link

    Butyltin compounds in a sediment core from the old Tilbury basin, London, UK

    Get PDF
    Sections from a sediment core taken from the River Thames were analysed for butyltin species using gas chromatography with species-specific isotope dilution mass spectrometry. Results demonstrated that in most samples tributyltin concentrations of 20–60 ng/g accounted for <10% of the total butyltin species present, which is in agreement with data from other sediment samples which were historically contaminated with tributyltin. Vertical distribution of the organotin residues with depth throughout the core, with data on organochlorine compounds and heavy metals allowed for the construction of a consistent hypothesis on historical deposition of contaminated sediments. From this it was possible to infer that the concentrations of tributyltin in sediments deposited during the early 1960s were in the order of 400–600 lg/g by using degradation rate constants derived by other workers. Such values fall well within the range quoted for harbour sediments in the literature

    Dirac Gauginos and Kinetic Mixing

    Full text link
    We present formulae for the calculation of Dirac gaugino masses at leading order in the supersymmetry breaking scale using the methods of analytic continuation in superspace and demonstrate a link with kinetic mixing, even for non-abelian gauginos. We illustrate the result through examples in field and string theory. We discuss the possibility that the singlet superfield that gives the U(1) gaugino a Dirac mass may be a modulus, and some consequences of the D-term coupling to the scalar component. We give examples of possible effects in colliders and astroparticle experiments if the modulus scalar constitutes decaying dark matter.Comment: 17 pages, no figures. Published version, one reference adde

    Site 1220

    No full text
    Site 1220 (10°10.600´N, 142°45.503´W; 5218 meters below sea level (mbsl); Fig. F1) forms a southerly component of the 56-Ma transect drilled during Leg 199. It is situated about midway between the Clipperton and Clarion Fracture Zones in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1220 to be equivalent to Chron C25n (~56 Ma; Cande et al., 1989), slightly older than at Site 1219. At the outset of drilling at Site 1220, our estimate for total sediment depth was ~225 meters below seafloor (mbsf) (Fig. F2). Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles), Site 1220 should have been located ~3° south of the equator at 56 Ma and in an equatorial position at 40 Ma. Thus, Site 1220 should have been situated underneath the South Equatorial Current in the early Eocene. A nearby piston core (EW9709-13PC) taken during the site survey cruise recovered &gt;16 m of red clay, with the base of the core dated as middle-early Miocene on the basis of radiolarian biostratigraphy (Lyle, 2000). Site 1220 will be used to study equatorial ocean circulation from the late Paleocene through the late Eocene during the early Cenozoic thermal maximum. Sediment records from this site will help to define the calcite compensation depth (CCD) and lysocline during the Paleocene-Eocene and Eocene-Oligocene transitions. In this and other respects, Site 1220 will act as an interesting analog to Site 1218. Both sites are thought to have been located on the equator at ~40 Ma, but the older crustal age anticipated at Site 1220 dictates a greater paleowater depth than for contemporaneous sediments accumulating at Site 1218

    Site 1222

    No full text
    Site 1222 (13°48.98´N, 143°53.35´W; 4989 meters below sea level [mbsl]; Fig. F1) forms a south-central component of the 56-Ma transect drilled during Leg 199 and is situated ~2° south of the Clarion Fracture Zone in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1222 to be equivalent to Chron C25r or Chron C25n (~56-57 Ma) (Cande et al., 1989), which is slightly older than at Site 1219. At the outset of drilling at Site 1222, our estimate for total sediment thickness was ~115 m (Fig. F2). Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) Site 1222 should have been located ~1° north of the equator at 56 Ma and ~4°N at 40 Ma. A nearby gravity core (EW9709-17GC), taken during the site survey cruise, recovered &gt;5 m of red clay with a late-middle Miocene age on the basis of radiolarian biostratigraphy (Lyle, 2000). Deep Sea Drilling Project (DSDP) Site 42 located ~4° east of Site 1222, was not drilled to basement but contains a thin sedimentary section (~100 m thick) of upper Oligocene nannofossil ooze through middle Eocene radiolarian nannofossil ooze. In turn, DSDP Site 162 lies ~1° north of DSDP Site 42 and is situated on young crust (49 Ma) that contains ~150 m of clayey radiolarian and nannofossil oozes of early Oligocene-middle Eocene age. Site 1222 will be used to study the position of the Intertropical Convergence Zone in the late Eocene and Oligocene, to sample late Paleocene and early Eocene sediments in the central tropical Pacific Ocean, and to help determine whether or not there has been significant southward movement of the hotspots with respect to the spin axis prior to 40 Ma

    Site 1216

    No full text
    Site 1216 (21°27.16´N, 139°28.79´W; 5152 meters below sea level [mbsl]; Fig. F1) is situated in abyssal hill topography south of the Molokai Fracture Zone and two small associated unnamed parasitic fracture zones (Fig. F2). Based on magnetic lineations, Site 1216 appears to be situated on normal ocean crust formed during the C25r magnetic anomaly (~57 Ma; Atwater and Severinghaus, 1989). Site 1216 was chosen for drilling because it is near the thickest section of lower Eocene sediments along the 56-Ma transect, which was based upon the seismic stratigraphy of seismic reflection data acquired on site survey cruise EW9709 during transits between the proposed drill sites (Lyle et al., this volume; Moore et al., 2002). The Cenozoic history of sedimentation in this region was poorly constrained prior to Leg 199, being largely based on two Deep Sea Drilling Project (DSDP) drill sites (40 and 41) and piston core data (EW9709-3PC) from ~1.5° in latitude to the south. Based on data from these drill sites, we expected the sedimentary sequence at Site 1216 to comprise red clays (a mixture of wind-blown dust and authigenic precipitates) overlying a biogenic sediment section composed of an upper middle Eocene radiolarian ooze and lower carbonate ooze deposited when the site was near the ridge crest in the late Paleocene and early Eocene. The broad paleoceanographic objectives of drilling the sedimentary sequence anticipated at Site 1216 are as follows: (1) to help define the shift in the Intertropical Convergence Zone through the Paleogene by following the change in eolian-dust composition and flux through time (red clays) and (2) to help define the latitudinal extent, composition, and mass accumulation of plankton communities in the north equatorial Pacific region thereby constraining ocean circulation patterns and the extent of the equatorial high-productivity belt in the Eocene ocean. Results from Site 1216 will also provide important information to test whether there was significant motion of the Hawaiian hotspot with respect to the Earth's spin axis during the early Cenozoic. At 56 Ma, the backtracked location of Site 1216 based upon a hotspot reference frame (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) is about 9°N, 108°W. If significant hotspot motion or true polar wander occurred since 57 Ma (Petronotis et al., 1994), this drill site could have been much nearer to the equator
    corecore