105 research outputs found
Testing refinements by refining tests
One of the potential benefits of formal methods is that they offer the possibility of reducing the costs of testing. A specification acts as both the benchmark against which any implementation is tested, and also as the means by which tests are generated. There has therefore been interest in developing test generation techniques from formal specifications, and a number of different methods have been derived for state based languages such as Z, B and VDM. However, in addition to deriving tests from a formal specification, we might wish to refine the specification further before its implementation. The purpose of this paper is to explore the relationship between testing and refinement. As our model for test generation we use a DNF partition analysis for operations written in Z, which produces a number of disjoint test cases for each operation. In this paper we discuss how the partition analysis of an operation alters upon refinement, and we develop techniques that allow us to refine abstract tests in order to generate test cases for a refinement. To do so we use (and extend existing) methods for calculating the weakest data refinement of a specification
On the measurement of leptonic CP violation
We show that the simultaneous determination of the leptonic CP-odd phase
and the angle from the subleading transitions
and results generically, at
fixed neutrino energy and baseline, in two degenerate solutions. In light of
this, we refine a previous analysis of the sensitivity to leptonic CP violation
at a neutrino factory, in the LMA-MSW scenario, by exploring the full range of
and .
Furthermore, we take into account the expected uncertainties on the solar and
atmospheric oscillation parameters and in the average Earth matter density
along the neutrino path. An intermediate baseline of O(3000) km is still the
best option to tackle CP violation, although a combination of two baselines
turns out to be very important in resolving degeneracies.Comment: 19 pages, 14 figures, uses epsfi
Superbeams plus Neutrino Factory: the golden path to leptonic CP violation
Superbeams (SB) and neutrino factories (NF) are not alternative facilities for exploring neutrino oscillation physics, but successive steps. The correct strategy is to contemplate the combination of their expected physics results. We show its important potential on the disappearance of fake degenerate solutions in the simultaneous measurement Of theta(13) and leptonic CP violation. Intrinsic, sign (Deltam(13)(2)) and theta(23) degeneracies are shown to be extensively eliminated when the results from one NF baseline and a SB facility are combined. A key point is the different average neutrino energy and baseline of the facilities. For values of theta(13) near its present limit, the short NF baseline, e.g., L = 732 km, becomes, after such a combination, a very interesting distance. For smaller theta(13), an intermediate NF baseline of O (3000 km) is still required
Viability of Noether symmetry of F(R) theory of gravity
Canonization of F(R) theory of gravity to explore Noether symmetry is
performed treating R - 6(\frac{\ddot a}{a} + \frac{\dot a^2}{a^2} +
\frac{k}{a^2}) = 0 as a constraint of the theory in Robertson-Walker
space-time, which implies that R is taken as an auxiliary variable. Although it
yields correct field equations, Noether symmetry does not allow linear term in
the action, and as such does not produce a viable cosmological model. Here, we
show that this technique of exploring Noether symmetry does not allow even a
non-linear form of F(R), if the configuration space is enlarged by including a
scalar field in addition, or taking anisotropic models into account.
Surprisingly enough, it does not reproduce the symmetry that already exists in
the literature (A. K. Sanyal, B. Modak, C. Rubano and E. Piedipalumbo,
Gen.Relativ.Grav.37, 407 (2005), arXiv:astro-ph/0310610) for scalar tensor
theory of gravity in the presence of R^2 term. Thus, R can not be treated as an
auxiliary variable and hence Noether symmetry of arbitrary form of F(R) theory
of gravity remains obscure. However, there exists in general, a conserved
current for F(R) theory of gravity in the presence of a non-minimally coupled
scalar-tensor theory (A. K. Sanyal, Phys.Lett.B624, 81 (2005),
arXiv:hep-th/0504021 and Mod.Phys.Lett.A25, 2667 (2010), arXiv:0910.2385
[astro-ph.CO]). Here, we briefly expatiate the non-Noether conserved current
and cite an example to reveal its importance in finding cosmological solution
for such an action, taking F(R) \propto R^{3/2}.Comment: 16 pages, 1 figure. appears in Int J Theoretical Phys (2012
Estimation and application of the thermodynamic properties of aqueous phenanthrene and isomers of methylphenanthrene at high temperature
Estimates of standard molal Gibbs energy (ÎGf°) and enthalpy (ÎHf°) of formation, entropy (S°), heat capacity (Cp°) and volume (V°) at 25 °C and 1 bar of aqueous phenanthrene (P) and 1-, 2-, 3-, 4- and 9-methylphenanthrene (1-MP, 2-MP, 3-MP, 4-MP, 9-MP) were made by combining reported standard-state properties of the crystalline compounds, solubilities and enthalpies of phenanthrene and 1-MP, and relative Gibbs energies, enthalpies and entropies of aqueous MP isomers from published quantum chemical simulations. The calculated properties are consistent with greater stabilities of the ÎČ isomers (2-MP and 3-MP) relative to the α isomers (1-MP and 9-MP) at 25 °C. However, the metastable equilibrium values of the abundance ratios 2-MP/1-MP (MPR) and (2-MP + 3-MP)/(1-MP + 9-MP) (MPI-3) decrease with temperature, becoming <1 at ~375â455 °C. The thermodynamic model is consistent with observations of reversals of these organic maturity parameters at high temperature in hydrothermal and metamorphic settings. Application of the model to data reported for the Paleoproterozoic Hereâs Your Chance (HYC) PbâZnâAg ore deposit (McArthur River, Northern Territory, Australia) indicates a likely effect of high-temperature equilibration on reported values of MPR and MPI-3, but this finding is contingent on the location within the deposit. If metastable equilibrium holds, a third aromatic maturity ratio, 1.5 Ă (2-MP + 3-MP)/(P + 1-MP + 9-MP) (MPI-1), can be used as a proxy for oxidation potential. Values of log aH2(aq) determined from data reported for HYC and for a sequence of deeply buried source rocks are indicative of more reducing conditions at a given temperature than those inferred from data reported for two sets of samples exposed to contact or regional metamorphism. These results are limiting-case scenarios for the modeled systems that do not account for effects of non-ideal mixing or kinetics, or external sources or transport of the organic matter.Nevertheless, quantifying the temperature dependence of equilibrium constants of organic reactions enables the utilization of organic maturity parameters as relative geothermometers at temperatures higher than the nominal limits of the oil window
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
- âŠ