178 research outputs found

    Tumor-associated and immunochemotherapy-dependent long-term alterations of the peripheral blood NK cell compartment in DLBCL patients

    Get PDF
    Natural Killer (NK) cells are a key component of tumor immunosurveillance and thus play an important role in rituximab-dependent killing of lymphoma cells via an antibody-dependent cellular cytotoxicity (ADCC) mechanism. We evaluated the phenotypic and functional assets of peripheral blood NK cell subsets in 32 newly-diagnosed diffuse large B-cell lymphoma (DLBCL) patients and in 27 healthy controls. We further monitored long-term modifications of patient NK cells for up to 12 months after rituximab-based immunochemotherapy. At diagnosis, patients showed a higher percentage of CD56dim and CD16C NK cells, and a higher frequency of GrzBC cells in CD56dim, CD56bright, and CD16C NK cell subsets than healthy controls. Conversely, DLBCL NK cell killing and interferon g (IFNg) production capability were comparable to those derived from healthy subjects. Notably, NK cells from refractory/relapsed patients exhibited a lower “natural” cytotoxicity. A marked and prolonged therapy-induced reduction of both “natural” and CD16- dependent NK cytotoxic activities was accompanied by the down-modulation of CD16 and NKG2D activating receptors, particularly in the CD56dim subset. However, reduced NK cell killing was not associated with defective lytic granule content or IFNg production capability. This study firstly describes tumor-associated and therapy-induced alterations of the systemic NK cell compartment in DLBCL patients. As these alterations may negatively impact rituximab-based therapy efficacy, our work may provide useful information for improving immunochemotherapeutic strategies

    The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells

    Get PDF
    In this paper we report on the cloning and characterization of mouse CCR8. Like its human homologue, it is predominantly expressed in the thymus. In the periphery, murine CCR8 mRNA was found most abundantly expressed in activated Th2-polarized cells and in NK1.1+ CD4+ T cells. Human CCR8 is also preferentially expressed in human Th2-polarized cells and clones. This pattern of expression suggests that CCR8 is part of a Th2-specific gene expression program. The CCR8 ligands I-309 and its mouse homologue T cell activation gene 3 (TCA-3) are potent chemoattractants for Th2-polarized cells. Taken together, these observations strongly suggest that CCR8 plays a role in the control of Th2 responses, and may represent a potential target for treatment of allergic diseases

    Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice

    Get PDF
    We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron) survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system)-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide) is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type), a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3−/− mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2−/− (recombination activating gene-2-deficient) mice adoptively transferred CD4+ T-cells isolated from CCR3−/− mice, but not in CCR3−/− mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury

    Samhd1 phosphorylation and cytoplasmic relocalization after human cytomegalovirus infection limits its antiviral activity

    Get PDF
    SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities

    Limited response of NK92 cells to Plasmodium falciparum-infected erythrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanisms by which anti-malarial immune responses occur are still not fully clear. Natural killer (NK) cells are thought to play a pivotal role in innate responses against <it>Plasmodium falciparum</it>. In this study, the suitability of NK92 cells as models for the NK mechanisms involved in the immune response against malaria was investigated.</p> <p>Methods</p> <p>NK92 cells were assessed for several signs of activation and cytotoxicity due to contact to parasites and were as well examined by oligonucleotide microarrays for an insight on the impact <it>P. falciparum</it>-infected erythrocytes have on their transcriptome. To address the parasite side of such interaction, growth inhibition assays were performed including non-NK cells as controls.</p> <p>Results</p> <p>By performing microarrays with NK92 cells, the impact of parasites on a transcriptional level was observed. The findings show that, although not evidently activated by iRBCs, NK92 cells show transcriptional signs of priming and proliferation. In addition, decreased parasitaemia was observed due to co-incubation with NK92 cells. However, such effect might not be NK-specific since irrelevant cells also affected parasite growth <it>in vitro</it>.</p> <p>Conclusions</p> <p>Although NK92 cells are here shown to behave as poor models for the NK immune response against parasites, the results obtained in this study may be of use for future investigations regarding host-parasites interactions in malaria.</p

    Human G Protein–Coupled Receptor Gpr-9-6/Cc Chemokine Receptor 9 Is Selectively Expressed on Intestinal Homing T Lymphocytes, Mucosal Lymphocytes, and Thymocytes and Is Required for Thymus-Expressed Chemokine–Mediated Chemotaxis

    Get PDF
    TECK (thymus-expressed chemokine), a recently described CC chemokine expressed in thymus and small intestine, was found to mediate chemotaxis of human G protein–coupled receptor GPR-9-6/L1.2 transfectants. This activity was blocked by anti–GPR-9-6 monoclonal antibody (mAb) 3C3. GPR-9-6 is expressed on a subset of memory α4β7high intestinal trafficking CD4 and CD8 lymphocytes. In addition, all intestinal lamina propria and intraepithelial lymphocytes express GPR-9-6. In contrast, GPR-9-6 is not displayed on cutaneous lymphocyte antigen–positive (CLA+) memory CD4 and CD8 lymphocytes, which traffic to skin inflammatory sites, or on other systemic α4β7−CLA− memory CD4/CD8 lymphocytes. The majority of thymocytes also express GPR-9-6, but natural killer cells, monocytes, eosinophils, basophils, and neutrophils are GPR-9-6 negative. Transcripts of GPR-9-6 and TECK are present in both small intestine and thymus. Importantly, the expression profile of GPR-9-6 correlates with migration to TECK of blood T lymphocytes and thymocytes. As migration of these cells is blocked by anti–GPR-9-6 mAb 3C3, we conclude that GPR-9-6 is the principal chemokine receptor for TECK. In agreement with the nomenclature rules for chemokine receptors, we propose the designation CCR-9 for GPR-9-6. The selective expression of TECK and GPR-9-6 in thymus and small intestine implies a dual role for GPR-9-6/CCR-9, both in T cell development and the mucosal immune response

    Coreceptor Usage by HIV-1 and HIV-2 Primary Isolates: The Relevance of CCR8 Chemokine Receptor as an Alternative Coreceptor

    Get PDF
    The human immunodeficiency virus replication cycle begins by sequential interactions between viral envelope glycoproteins with CD4 molecule and a member of the seven-transmembrane, G-protein-coupled, receptors' family (coreceptor). In this report we focused on the contribution of CCR8 as alternative coreceptor for HIV-1 and HIV-2 isolates. We found that this coreceptor was efficiently used not only by HIV-2 but particularly by HIV-1 isolates. We demonstrate that CXCR4 usage, either alone or together with CCR5 and/or CCR8, was more frequently observed in HIV-1 than in HIV-2 isolates. Directly related to this is the finding that the non-usage of CXCR4 is significantly more common in HIV-2 isolates; both features could be associated with the slower disease progression generally observed in HIV-2 infected patients. The ability of some viral isolates to use alternative coreceptors besides CCR5 and CXCR4 could further impact on the efficacy of entry inhibitor therapy and possibly also in HIV pathogenesis

    Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Get PDF
    Background: The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5) melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-gamma or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods: These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN), were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-gamma or TNF-alpha was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO) was determined using GRIES reagent. Results: We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1 alpha and MIP-1 beta following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-gamma or TNF-alpha, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC), MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin-deficient (PKO) effector T cells induced macrophages to secrete nitric oxide (NO), providing an additional effector mechanism for T cell-mediated tumor regression. Conclusion: These data suggest two possible sources for chemokine secretion that stimulates macrophage recruitment to the site of tumor metastases. Both appear to be initiated by T cell recognition of specific antigen, but one is dependent on the tumor cells to produce the chemokines that recruit macrophages

    Chemokines and their role in airway hyper-reactivity

    Get PDF
    Airway hyper-reactivity is a characteristic feature of many inflammatory lung diseases and is defined as an exaggerated degree of airway narrowing. Chemokines and their receptors are involved in several pathological processes that are believed to contribute to airway hyper-responsiveness, including recruitment and activation of inflammatory cells, collagen deposition and airway wall remodeling. These proteins are therefore thought to represent important therapeutic targets in the treatment of airway hyper-responsiveness. This review highlights the processes thought to be involved in airway hyper-responsiveness in allergic asthma, and the role of chemokines in these processes. Overall, the application of chemokines to the prevention or treatment of airway hyper-reactivity has tremendous potential

    Disruption of the CCL1-CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice

    Get PDF
    The CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for leukocytes that plays an important role in inflammatory processes and diseases through binding to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital microscopy demonstrated an essential role for CCL1 in leukocyte recruitment. Mice doubly deficient for CCL1 and Apoe exhibited enhanced atherosclerosis in aorta, which was associated with reduced plasma levels of the anti-inflammatory interleukin 10, an increased splenocyte Th1/Th2 ratio, and a reduced regulatory T cell (Treg) content in aorta and spleen. Reduced Treg recruitment and aggravated atherosclerosis were also detected in the aortas of fat-fed low-density lipoprotein receptor-null mice treated with CCR8 blocking antibodies. These findings demonstrate that disruption of the CCL1-CCR8 axis promotes atherosclerosis by inhibiting interleukin 10 production and Treg recruitment and function.This study was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU, grants SAF2016-79490-R and SAF2014-57845-R) and the Instituto de Salud Carlos III (ISCIII, grants PI14/00526, PI17/01395, CP11/00145, and CPII16/00022) with co-funding from the European Regional Development Fund (ERDF, “Una manera de hacer Europa”), the Fundación Ramón Areces, European Union (EuroCellNet COST Action CA15214) and the INSERM. VZG is supported by the ISCIII, JMG-G by the ISCIII Miguel Servet Program and the Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), AdMM by the MCIU (predoctoral contract BES-2014-06779), and ZM by a British Heart Foundation Professorship. The CNIC is supported by the MCIU and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S
    corecore