683 research outputs found

    Algebraic inversion of the Dirac equation for the vector potential in the non-abelian case

    Full text link
    We study the Dirac equation for spinor wavefunctions minimally coupled to an external field, from the perspective of an algebraic system of linear equations for the vector potential. By analogy with the method in electromagnetism, which has been well-studied, and leads to classical solutions of the Maxwell-Dirac equations, we set up the formalism for non-abelian gauge symmetry, with the SU(2) group and the case of four-spinor doublets. An extended isospin-charge conjugation operator is defined, enabling the hermiticity constraint on the gauge potential to be imposed in a covariant fashion, and rendering the algebraic system tractable. The outcome is an invertible linear equation for the non-abelian vector potential in terms of bispinor current densities. We show that, via application of suitable extended Fierz identities, the solution of this system for the non-abelian vector potential is a rational expression involving only Pauli scalar and Pauli triplet, Lorentz scalar, vector and axial vector current densities, albeit in the non-closed form of a Neumann series.Comment: 21pp, uses iopar

    Spatial Analysis of Temporal Changes in the Pandemic of Severe Cassava Mosaic Disease in Northwestern Tanzania

    Get PDF
    Published online: 8 Sept 2017To improve understanding of the dynamics of the cassava mosaic disease (CMD) pandemic front, geospatial approaches were applied to the analysis of 3 years’ data obtained from a 2-by-2° (approximately 222-by-222 km) area of northwestern Tanzania. In total, 80 farmers’ fields were assessed in each of 2009, 2010, and 2011, with 20 evenly distributed fields per 1-by-1° quadrant. CMD-associated variables (CMD incidence, CMD severity, vector-borne CMD infection, and vector abundance) increased in magnitude from 2009 to 2010 but showed little change from 2010 to 2011. Increases occurred primarily in the two westernmost quadrants of the study area. A pandemic “front” was defined by determining the values of CMD incidence and whitefly abundance where predicted disease gradients were greatest. The pandemic-associated virus (East African cassava mosaic virus-Uganda) and vector genotype (Bemisia tabaci sub-Saharan Africa 1–subgroup 1) were both present within the area bounded by the CMD incidence front but both also occurred ahead of the front. The average speed and direction of movement of the CMD incidence front (22.9 km/year; southeast) and whitefly abundance front (46.6 km/year; southeast) were calculated, and production losses due to CMD were estimated to range from US$4.3 million to 12.2 million

    Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), in sub-Saharan African farming landscapes: a review of the factors determining abundance

    Get PDF
    Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes widespread damage to cassava, a staple food crop for millions of smallholder households in Sub-Saharan Africa. Species in the complex cause direct feeding damage to cassava and are the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-resistant cassava cultivars, there has been little research effort aimed at understanding the ecology of these insect vectors. In this review we critically assess the knowledge base relating to factors that may lead to high population densities of Sub-Saharan African (SSA) Bemisia tabaci species in cassava production landscapes of East Africa. We focus first on empirical studies that have examined biotic or abiotic factors that may lead to high populations. We then identify knowledge gaps that need to be filled to deliver long-term sustainable solutions to manage both the vectors and the viruses that they transmit. We found that whilst many hypotheses have been put forward to explain the increases in abundance witnessed since the early 1990s, there are little available published data and these tend to have been collected in a piecemeal manner. The most critical knowledge gaps identified were: (i) understanding how cassava cultivars and alternative host plants impact B. tabaci population dynamics and its natural enemies; (ii) the impact of natural enemies in terms of reducing the frequency of outbreaks and (iii) the use and management of insecticides to delay or avoid the development of resistance. In addition, there are several fundamental methodologies that need to be developed and deployed in East Africa to address some of the more challenging knowledge gaps

    Thermally activated resonant tunnelling in GaAs/AlGaAs triple barrier heterostructures

    Get PDF
    We report the observation of a thermally activated resonant tunnelling feature in the current?voltage characteristics (I(V)) of triple barrier resonant tunnelling structures (TBRTS) due to the alignment of the n = 1 confined states of the two quantum wells within the active region. With great renewed interest in tunnelling structures for high frequency (THz) operation, the understanding of device transport and charge accumulation as a function of temperature is critical. With rising sample temperature, the tunnelling current of the observed low voltage resonant feature increases in magnitude showing a small negative differential resistance region which is discernible even at 293 K and is unique to multiple barrier devices. This behaviour is not observed in conventional double barrier resonant tunnelling structures where the transmission coefficient at the Fermi energy is predominantly controlled by an electric field, whereas in TBRTS it is strongly controlled by the 2D to 2D state alignment

    Circular Polarization Induced by Scintillation in a Magnetized Medium

    Get PDF
    A new theory is presented for the development of circular polarization as radio waves propagate through the turbulent, birefringent interstellar medium. The fourth order moments of the wavefield are calculated and it is shown that unpolarized incident radiation develops a nonzero variance in circular polarization. A magnetized turbulent medium causes the Stokes parameters to scintillate in a non-identical manner. A specific model for this effect is developed for the case of density fluctuations in a uniform magnetic field.Comment: 16 pages, 1 figure, Phys. Rev. E, accepte

    Radio Circular Polarization Produced in Helical Magnetic Fields in Eight Active Galactic Nuclei

    Get PDF
    Homan & Lister (2006) have recently published circular-polarization (CP) detections for 34 objects in the MOJAVE sample - a set of bright, compact AGN being monitored by the Very Long Baseline Array at 15 GHz. We report the detection of 15-GHz parsec-scale CP in two more AGN (3C345 and 2231+114), and confirm the MOJAVE detection of CP in 1633+382. It is generally believed that the most likely mechanism for the generation of this CP is Faraday conversion of linear polarization to CP. A helical jet magnetic-field (B-field) geometry can facilitate this process - linearly polarized emission from the far side of the jet is converted to CP as it passes through the magnetised plasma at the front side of the jet on its way toward the observer. In this case, the sign of the generated CP is essentially determined by the pitch angle and helicity of the helical B field. We have determined the pitch-angle regimes and helicities of the helical jet B fields in 8 AGN for which parsec-scale CP has been detected, and used them to predict the expected CP signs for these AGN if the CP is generated via conversion in these helical fields. We have obtained the intriguing result that our predictions agree with the observed signs in all eight cases, provided that the longitudinal B-field components in the jets correspond to South magnetic poles. This clearly non-random pattern demonstrates that the observed CP in AGN is directly associated with the presence of helical jet B fields. These results suggest that helical B fields are ubiquitous in AGN jets.Comment: 24 pages, 6 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS

    Data Stream Clustering for Real-Time Anomaly Detection: An Application to Insider Threats

    Get PDF
    Insider threat detection is an emergent concern for academia, industries, and governments due to the growing number of insider incidents in recent years. The continuous streaming of unbounded data coming from various sources in an organisation, typically in a high velocity, leads to a typical Big Data computational problem. The malicious insider threat refers to anomalous behaviour(s) (outliers) that deviate from the normal baseline of a data stream. The absence of previously logged activities executed by users shapes the insider threat detection mechanism into an unsupervised anomaly detection approach over a data stream. A common shortcoming in the existing data mining approaches to detect insider threats is the high number of false alarms/positives (FPs). To handle the Big Data issue and to address the shortcoming, we propose a streaming anomaly detection approach, namely Ensemble of Random subspace Anomaly detectors In Data Streams (E-RAIDS), for insider threat detection. E-RAIDS learns an ensemble of p established outlier detection techniques [Micro-cluster-based Continuous Outlier Detection (MCOD) or Anytime Outlier Detection (AnyOut)] which employ clustering over continuous data streams. Each model of the p models learns from a random feature subspace to detect local outliers, which might not be detected over the whole feature space. E-RAIDS introduces an aggregate component that combines the results from the p feature subspaces, in order to confirm whether to generate an alarm at each window iteration. The merit of E-RAIDS is that it defines a survival factor and a vote factor to address the shortcoming of high number of FPs. Experiments on E-RAIDS-MCOD and E-RAIDS-AnyOut are carried out, on synthetic data sets including malicious insider threat scenarios generated at Carnegie Mellon University, to test the effectiveness of voting feature subspaces, and the capability to detect (more than one)-behaviour-all-threat in real-time. The results show that E-RAIDS-MCOD reports the highest F1 measure and less number of false alarm = 0 compared to E-RAIDS-AnyOut, as well as it attains to detect approximately all the insider threats in real-time

    What does regional studies study? From subnational to supra-national regional spaces or Grossraum of sovereign governance

    Get PDF
    This article makes a case for expanding the scope of current versions of “regional studies” to include greater emphasis upon transnational regions as of equal if not greater importance compared with an exclusive focus upon sub-national regions. The latter more restrictive approach is typically predicated on the continued centrality of state borders against which the dominant notion of regions as subnational entities is constituted and reiterated. Drawing upon a case study of the African Union our study provides a framework, a critically revised Grossraum theory, for addressing the emergence of a new pluralistic and multipolar world order characterised by supra-national regions and regional organizations. Traditional Schmittian notions of Grossraum are shown to be in need of substantial revision before they are able to adequately accommodate and explain the empirical details of our case study
    • …
    corecore