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Abstract 

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes 

widespread damage to cassava, a staple food crop for millions of smallholder households in 

Sub-Saharan Africa. Species in the complex cause direct feeding damage to cassava and are 

the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-

resistant cassava cultivars, there has been little research effort aimed at understanding the 

ecology of these insect vectors. In this review we critically assess the knowledge base 

relating to factors that may lead to high population densities of Sub-Saharan African (SSA) 

Bemisia tabaci species in cassava production landscapes of East Africa. We focus first on 

empirical studies that have examined biotic or abiotic factors that may lead to high 

populations. We then identify knowledge gaps that need to be filled to deliver long-term 

sustainable solutions to manage both the vectors and the viruses that they transmit. We 

found that whilst many hypotheses have been put forward to explain the increases in 

abundance witnessed since the early 1990s, there are little available published data and 

these tend to have been collected in a piecemeal manner. The most critical knowledge gaps 

identified were: (i) understanding how cassava cultivars and alternative host plants impact B. 

tabaci population dynamics and its natural enemies; (ii) the impact of natural enemies in 

terms of reducing the frequency of outbreaks and (iii) the use and management of 

insecticides to delay or avoid the development of resistance. In addition, there are several 

fundamental methodologies that need to be developed and deployed in East Africa to 

address some of the more challenging knowledge gaps. 
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Introduction 

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes 

widespread damage to cassava, a staple food crop in many millions of smallholder 

households in Sub-Saharan Africa (Otim-Nape et al., 2000; Colvin et al., 2004; Legg et al., 

2006; Patil et al., 2015). Bemisia tabaci cause direct feeding damage to cassava and vector 

multiple plant viruses that in combination lead to significant yield loss (Holt & Colvin, 2001).  

Whilst substantial effort has gone into developing virus-resistant cassava cultivars, there has 

been little research effort aimed at understanding this insect vector, which alone can reduce 

yields, by 40% (Thresh et al., 1997). Based on partial mtCO1 gene sequence phylogenetic 

analysis, the B. tabaci complex is composed of four major clades (a clade is a group of 

organisms believed to have all descended from a common ancestor). The Sub-Saharan Africa 

clade forms the ancestral root (Boykin et al., 2013) of the complex and over the last 20 

years, species in this clade have been responsible for an increased frequency of outbreaks in 

cassava growing areas of East Africa. B. tabaci causes direct damage through feeding and the 

excretion of sugar-rich honeydew, which acts as a substrate for sooty moulds that reduces 

both respiration and photosynthesis. Furthermore, these species transmit several cassava 

infecting viruses (Maruthi et al., 2002a; Maruthi et al., 2002b) and there has been a 

significant research effort around understanding the plant viruses, but little effort aimed at 

the vector. This disproportionate approach to managing insect-vectored plant diseases is not 

unusual, but has led repeatedly to management solutions that are not sustainable. This 

review of the empirical evidence is timely and necessary as we need to identify clearly the 

biotic and abiotic factors that may have contributed to high population growth in the past, 

before we can develop urgently needed and sustainable management recommendations for 
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the future. 

 

Whilst many hypotheses have been put forward about the factors that may be contributing 

to high B. tabaci populations on cassava in East Africa, there are little data available and 

these tend to have been collected in a piecemeal manner. The aim of this review is to 

summarise the published data and assess the evidence base through synthesis and detection 

of knowledge gaps. We focus on research conducted in the East African countries of 

Tanzania, Uganda, Rwanda, Burundi, South Sudan and Malawi, but have excluded studies 

that look solely at virus impacts on the crop. We start by listing factors that, from an a priori 

perspective, are likely to be important determinants of whitefly abundance (Table 1). There 

have been several important review articles that have summarised information on cassava 

virus disease epidemics and these speculated on some of the likely causes (Table 3). In 

addition, there are reviews by Legg et al. (1994), Fishpool & Burban (1994) and Colvin et al. 

(2006) that provide a good baseline of ecological and biological information. A complicating 

factor in reviewing the evidence-base for factors relating to East African B. tabaci is that our 

understanding of B. tabaci as a species has changed in the previous decade and so it is at 

times unclear as to the actual identity (as determined by their partial mtCO1 gene sequence) 

of the species being referred to, especially in older references. Where possible, we attempt 

to resolve these issues. 

 

Our objectives for this review are firstly to synthesise the existing literature on the Sub-

Saharan African (SSA) B. tabaci species’ ecology and to review critically this knowledge-base. 

We focus on empirical studies that have examined biophysical factors that may lead to high 
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populations or outbreaks of the SSA B. tabaci. We then identify the gaps in knowledge and 

understanding that need to be filled to deliver long-term sustainable solutions to manage 

both the vector species and the viruses that they transmit.  

 

African B. tabaci species complex: naming and identification  

Throughout this review we use B. tabaci to mean the B. tabaci species complex found in East 

Africa. However, the identification of the species involved in these outbreaks based on genetic 

differences has only recently been attempted. Due to morphological similarities, B. tabaci was 

originally thought to be one species world-wide, but based on genetic differences (Colvin et 

al., 2004; Sseruwagi et al., 2005; Boykin et al., 2007; Boykin et al., 2013; Wang et al., 2014); 

and mating incompatibility (Colvin et al., 2004; Liu et al., 2007; Xu et al., 2010) it is now 

recognized as a species complex with at least 34 to 36 species (Boykin et al., 2012, Barbosa et 

al., 2015). This discovery of further species diversity has led to many nomenclatural changes 

over the last 10 years causing confusion in the literature (Boykin & De Barro, 2014).  

 

The sub-Saharan African B. tabaci species (SSA) are no exception to the nomenclatural 

confusion. Identification of species in the B. tabaci pest complex currently relies on the 3’ 

region of 657bp partial mtDNA COI gene identity. However, many names have been used for 

the same SSA entities with little consistency from study to study. The naming confusion has 

made it difficult to compare studies of ecological importance across time or from different 

researchers.  For example, Sseruwagi (2005a) used “Ug1”, Legg (2014a) used “SSA1 sub-

groups 1-3” and Mugerwa (2012) used “SSA1 sub-clades I-III” based on mtCO1 data. Are these 

the same entity?  In short, no. Relevant to this study are the SSA1 and SSA2 species of B. tabaci 
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where Ug1 = SSA1 and further subdivisions of that species include SSA1 subgroup 1 (Legg et 

al., 2014a) = SSA1 subclade I (Mugerwa et al., 2012).  However, Ug2 (Sseruwagi et al., 2005) 

translates directly to SSA2 (Mugerwa et al., 2012; Legg et al., 2014a) with little confusion. Most 

of the confusion involves the SSA1 species, because most studies did not compare their SSA1 

mtCO1 sequences against the then known available diversity. This meant that their data was 

not set firmly within our understanding of B. tabaci diversity.  

 

Greater clarity around the species identity of individuals involved in future outbreaks will help 

to uncover the causes of these outbreaks. Conclusions and findings from past work in this 

region, however, are still useful to understanding the ecology of the species complex. In 

addition, species-specific management strategies and interventions will play a larger role in 

the future (see “Knowledge gaps” section towards the end of this review). 

 

History of B. tabaci abundance on cassava, outbreaks and responses 

There are a range of factors (both top-down and bottom-up) that may influence the 

abundance of any pest herbivore on a host plant. Understanding how these factors relate to 

population dynamics and distributions at the scale of a field and region is critical for 

determining if an outbreak of a pest is likely to occur. We define an outbreak situation as 

one in which the pest herbivore or plant-virus vector has been released from control, has 

reached high abundances, and is causing economic injury to the crop. This problem usually 

manifests at the field or regional-scale. Importantly, crop damage can occur at low pest 

abundance, especially in the case of virus transmission. Thus, whilst outbreaks are often 

obvious to farmers and the general community, significant yield loss and damage can occur 
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in non-outbreak situations. Here we focus on the documented evidence of factors that 

influence abundance of B. tabaci on cassava in East Africa.  

 

There has been a change in the abundance of B. tabaci in cassava production landscapes in 

East Africa in general over time (Fig. 1 and citations), however, quantitative definitions of 

what is a high or low population abundance has also changed across time. The standard 

approach has been to count the number of adults found on the top five leaves of multiple 

cassava plants within a field (Sseruwagi et al., 2004).  The threshold of the number of adults 

considered highly abundant, however, differs between studies. For example, in Legg et al., 

(2011) when >5 adults per top five leaves per plant were recorded on cassava, this was 

considered highly abundant. In contrast, Omongo et al., (2012) only considered populations 

>20 adults per top five leaves per plant as high. Some quantitative studies have been 

summarised in Table 1, however, it is still challenging to compare across studies that have 

used different sampling methodologies to document overall trends. Sseruwagi et al., (2004) 

provides a summary of mean number of B. tabaci from top five leaves from African studies 

prior to 2004. Colvin et al. (2006) examined the densities of cassava whitefly on virus-

symptomatic and non-symptomatic leaves and found that densities were significantly higher 

on the symptomatic leaves.  Few of these studies describe the relationship between the 

quantitative estimates of abundance per plant and outbreaks that occur at the field or 

regional-scale (the exception being Colvin et al., 2004). 

 

Early research from Ivory Coast considered cassava a poor host of cassava B. tabaci, as 

numbers rarely exceeded 300 adults per plant and more often there were 150 adults per 
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plant (Fishpool et al., 1995; Colvin et al., 1998; Fishpool & Burban, 1994 cited Fargette’s 

1985 thesis). However, other researchers might consider these to be relatively high 

numbers. More recently, greater abundance of B. tabaci has been confirmed on resistant 

compared to susceptible cassava cultivars (Otim et al., 2006; Adriko et al., 2011; Omongo et 

al., 2012). Survey data from across five regions in four countries (Uganda, Kenya, Tanzania 

and Burundi) showed that high numbers of B. tabaci coincided with CBSD prevalence and 

the rapid geographical spread of the disease (Legg et al., 2011). It is not clear if this pattern is 

the result of increased plantings of newer cultivars resistant to CMD, that are also more 

attractive to B. tabaci (Otim et al., 2006; Adriko et al., 2011; Omongo et al., 2012).  

 

We have summarised the available evidence on the historical outbreaks of B. tabaci, CMD, 

and CBSD across East African countries in figure 1. There are records of high populations of 

B. tabaci causing problems for farmers since the 1990’s. As with most pest outbreaks, there 

is a focus on data collection and analysis during the outbreak phase, until an intervention 

(e.g. the introduction of new cultivars) or change in the environment stops the outbreak, but 

a lack of information in the intervening periods. This makes it challenging to assess the 

causes and frequency of outbreaks, both at the local level and across the East African region. 

It is notable that the movement of infected cuttings (between regions within countries, and 

between countries) was implicated in a number of historical outbreaks (Alicai et al., 2007). 

Importantly, the introduction and dissemination of new CMD-resistant cultivars to combat 

food shortages because of epidemics was also facilitated through these routes. Less well-

documented is that disease sources can be present in endemic host plants such as Jatropha 

sp., and trade routes between India and Africa may have also facilitated disease spread 
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(Swanson & Harrison, 1994).  

 

Plant virus transmission by B. tabaci 

CMD outbreaks, that are at least partially whitefly-borne, have been occurring in East Africa 

since the 1960s (Jameson 1964). Many species in the B. tabaci species complex vector a 

range of damaging plant viruses and their life-history parameters can vary depending on the 

environmental conditions and the host plant they develop on. The published information 

suggests that the development period of B. tabaci from egg to adult emergence is between 

19 to 29 days and the species goes through four nymphal instars before entering a pupal 

phase (Colvin et al., 2006). Depending on the environmental conditions there can be 11 to 

12 generations of B. tabaci per year (Asiimwe et al., 2007). A description of the different 

developmental stages of B. tabaci on cassava, using a colony established in Uganda, is 

presented in Thompson (2000). Adult female B. tabaci produce 4 to 5 eggs per day and these 

are oviposited on the underside of the leaves and the leaf petiole. Both the adults and 

nymphs have sucking mouthparts to pierce the leaf tissue and consume phloem sap. Adults 

prefer to congregate and alight on the immature upper leaves of the cassava plant 

(Sseruwagi et al., 2004). The first nymphal stage is mobile until it finds a suitable feeding 

location. The nymphs exude honeydew, which falls onto the lower leaves of the plant 

leading to sooty mould development. 

 

A detailed description of both major diseases of cassava, cassava mosaic disease (CMD) and 

cassava brown streak disease (CBSD) can be found in Mabasa (2007), but we will summarise 

some of the key points here. There are seven cassava mosaic begomoviruses (CMBs), 
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(Geminiviridae; genus Begomovirus) that are related to cassava mosaic disease (CMD) (Legg 

et al., 2015). The first widespread outbreaks of CMD were reported in the 1930s in East 

Africa (Storey & Nichols, 1938; Fig. 1) and the presence of CMD is now confirmed in cassava 

across East Africa. CMD can be recognised by the characteristic chlorotic patination in the 

leaves. The leaf turns yellow and becomes distorted. Severe infection causes stunting of 

shoots, leaves and stems which reduce tuber growth and subsequently yield (Fauquet & 

Fargette, 1990; Maruthi et al., 2002; Omongo, 2003). Cassava grown from disease-free 

cuttings takes two to three weeks to shoot. There is a latent period after the first leaves 

appear of about one month between time of infection by B. tabaci and CMD symptom 

expression in cassava (Fauquet & Fargette, 1990). Symptoms increase until approximately 60 

days after planting. However, infection introduced beyond five months after planting (MAP) 

via B. tabaci has very little impact on the yield. This is because at five MAP the tubers have 

started to form and the plant is still able to provide significant yield (Fargette et al., 1990).  

 

Cassava brown streak disease (CBSD) is often found together with CMD, but this was not 

always the case (Alicai et al., 2007). Historically, CBSD was thought to be caused by two 

distinct viruses, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus 

(UCBSV) but Ndunguru et al., (2015) have recently found more genetic distinctiveness in 

both CBSV and UCBSV.  Both groups of Both viruses belong to the genus Ipomovirus, and 

family Potyviridae (Mbewe et al., 2015), however CBSV has a five times faster rate of 

evolution, and is more virulent compared with UCBSV (Alicai et al., 2016). Unlike CMBs, 

CBSV’s are semi-persistent in B. tabaci (Maruthi et al., 2005). Symptoms of CBSD include 

yellow blotchy patches on the leaves and a change in the colour of the leaf veins, especially 
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on the lower more mature leaves. The symptoms in the leaves are sometimes less apparent 

and are not noticed until the roots have been infected. Brown coloured vertical lesions occur 

on the stems and roots can become contorted and constricted. Cross sections of root from 

infected plants often show various degrees of brown necrotic tissue, which are usually more 

obvious towards the edges (Nichols, 1950; Hillocks & Jennings, 2003; Ntawuruhunga & Legg, 

2007). 

 

Bemisia tabaci species can carry and potentially transmit hundreds of different plant viruses 

(Morales & Jones, 2004, Polston et al., 2014). Harrison (1997) makes the argument that 

selection and subsequent spread of viruses by certain B. tabaci species might be possible. 

“Geminiviruses with different coat proteins were believed to be differentially adapted for 

transmission by different biotypes of B. tabaci” (McGrath & Harrison, 1995; Morales & 

Jones, 2004; Maruthi et al., 2002). This may be important; however, methods to test for 

these synergistic virus-vector relationships are rare (Patil & Fauquet, 2010). Both CMD and 

CBSD are spread through the propagation of infected cassava cuttings and vectored by B. 

tabaci in East Africa (Maruthi et al., 2005; Jeremiah et al., 2014, confirmed B. tabaci 

transmits CBSVs). Transmission of CMBs by B. tabaci has been confirmed in Africa (Burban et 

al., 1992; Fishpool & Burban, 1994; Gibson et al., 1996; Legg et al., 2002; Antony et al., 

2006). Survey of cassava across Tanzania during the 1993-1994 growing season showed 9.4% 

of African cassava mosaic disease (ACMD) infections could be attributed to B. tabaci 

transmission, compared to 55.9% of infections to the use of infected cuttings (Legg & Raya, 

1998). More recently it has been shown that a greater proportion of CMD is cutting borne 

compared to being vectored by B. tabaci (Night et al., 2011). Research by Dubern (1994) 
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indicated that B. tabaci was not an efficient vector of CMBs. However, Maruthi et al. (2002) 

used CMB isolates and B. tabaci sourced from four different areas (three African locations 

and one culture from India) to show that African CMBs were transmitted by African B. tabaci 

to 60-79% of the cassava plants. However, inoculation was significantly less when Indian B. 

tabaci transmitted an African CMD isolate and vice versa when B. tabaci from Tanzania 

transmitted CMB isolates from India. These results were used to support the idea that there 

is virus and or vector co-adaptation and that there is variability in vector competence and 

biological traits between B. tabaci species (Maruthi et al., 2002b). However, there is little 

quantifiable evidence for this hypothesis, and what evidence there is has been drawn from 

data that has a small number of samples (Xu et al., 2010). 

 

Factors influencing B. tabaci abundance 

There are likely to be a number of factors that will, in isolation or in combination, influence 

the abundance of B. tabaci in cassava landscapes. We have classified these into biotic 

(cassava cultivar, cassava age, cassava virus infection status, non-cassava host plants, natural 

enemies, competition with other herbivores and endosymbionts), abiotic (altitude, climate 

and weather) and other factors (pesticides, hybridization) in Table 2. Below we summarise 

the available evidence that may demonstrate a link with each factor and changes in 

abundance of B. tabaci populations. 

  

Biotic factors 

Cassava cultivar effects 

The primary way to manage disease in cassava has been to develop cultivars that are disease 
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resistant. Observations that some cultivars were susceptible to disease have been evident 

since the first outbreak of CMD in the 1930s (Storey & Nichols, 1938). The key response to 

the 1990’s CMD epidemic was to distribute cassava cuttings from resistant cultivars (Oliveira 

et al., 2001). In recent times, greater numbers of adult B. tabaci, and sometimes nymphs, 

have been associated with recently developed cultivars, although the dynamics of B. tabaci 

populations in semi-field situations have not been well documented (e.g. Katono et al., 

2015). Severity of cassava green mite (Mononychellus tanajoa) and CMD were higher on 

local cultivars of cassava, although B. tabaci populations were higher on improved cultivars 

(Night et al., 2011). To determine which cultivars had resistance to B. tabaci, 19 cultivars 

were exposed to B. tabaci for colonization. Numbers of nymphs, eggs, damage and sooty 

mould were greatest for cultivar I92/0067 and least for Njule Red (a local cultivar) (Omongo 

et al., 2012). Cassava leaf area did affect the severity of sooty mould (i.e. a cultivar with a 

lower number of B. tabaci could have a higher sooty mould severity score, presumably due 

to broader leaves). However, there was no obvious correlation between the numbers of B. 

tabaci adults and cultivar plant traits such as leaf width, leaf colour or bitterness (Omongo et 

al., 2012).  

 

Beyond the obvious differences in plant morphology seen between different cassava 

cultivars, plant biochemistry may also play a role in determining suitability for growth and 

development of B. tabaci populations. Research on the phytochemistry of cassava has 

largely concentrated on defensive metabolites such as flavonoids, hydroxycoumarins, 

terpenoids and cyanogenic glucosides and their distribution within plant tissue. This work 

was recently reviewed by Blagbrough et al., (2010).  Cassava phytochemistry can impact 
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phloem feeders, with examples including the effect of its flavonoids and cyanogenic 

glucosides on the cassava mealybug, Phenacoccus manihoti (Calatayud et al., 1994a, b; 

Calatayud et al., 1997) and the cassava hemipteran pest, Cyrtomenus bergi (Riis et al., 2003). 

Bemisia tabaci can also be affected, and has been shown to induce cyanide-metabolizing 

enzymes when feeding on cassava compared to sweet potato (Antony et al., 2006). These 

results provide evidence that defensive plant metabolites play an important role in cassava 

colonization by phloem feeders including B. tabaci. However, how the phytochemistry of 

different cassava cultivars and tissues influences B. tabaci resistance remains unknown. 

Future efforts should be directed at confirming these mechanisms and explaining the effect 

of cassava plant chemistry on phloem feeders and other herbivores within the East African 

cassava environment. 

 

Cassava age   

As cassava matures, the degree to which it is a suitable host plant for B. tabaci changes. 

There are likely to be several factors associated with the aging process such as changes to 

leaf morphology, plant biochemistry and B. tabaci preference and learning that impact this 

process. The population of B. tabaci builds up starting at 3 MAP and peaks between 5 and 7 

MAP (Sseruwagi et al., 2003), when the foliage is very well formed and succulent after which 

it drops drastically as the plants grow taller, become more woody (less succulent) and shade 

the leaves. However, overall, the dynamics of B. tabaci populations in the field in response 

to factors that change as cassava ages have not been well documented.  

 

All the cultivars surveyed in Uganda in 1990-92 were susceptible to CMD (Otim-Nape et al., 

1998), but as cassava plants age the rate at which the CMD spreads is reduced (Fargette et 
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al., 1993). Cuttings taken from the top of the plant are more likely to be virus free for CBSD 

compared to those taken from the bottom of the plant (Mohammed et al., 2016), which may 

be related to plant age. During sampling for virus detection, virus titre is always highest in 

the older leaves for CBSVs, especially in the young (<6 months old) cassava plants. Research 

to identify the resistance mechanisms in cassava cultivars shows that some cultivars can 

recover as the plants age (known as reversion, Adriko et al., 2011). CMD symptoms 

disappeared and cuttings taken from initially infected plants developed without disease 

symptoms (Gibson and Otim-Nape, 1997a; Adriko et al., 2011).  

 

 Cassava virus-infection status 

There is some evidence to support the hypothesis that there is a relationship between 

disease severity in a plant and B. tabaci abundance (Gregory, 1948; Leuschner, 1977; Bock, 

1987; Robertson, 1987; Fargette et al., 1993; Otim-Nape et al., 1995; Colvin et al., 2004). If 

this is due to correlation or causation is often hard to untangle. The abundance of B. tabaci 

adults was shown to be significantly higher on healthy cassava plants compared to infected 

plants, but adults stayed longer on diseased plants and aggregated on the green plant tissue. 

This resulted in higher density of adults by photosynthetic leaf area (area of living leaf tissue) 

compared to plants without disease. Omongo (2003) posits that this increased density might 

trigger the adults to disperse. Results also show that adults are more likely to move from 

clean to infected plants, and diseased plants increased fecundity (Omongo, 2003).  

 

Cassava plants infected with CMBs have been reported to be more suitable for growth and 

development of B. tabaci. A summary of the studies showing the effect of virus infection of 
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host plants on B. tabaci population growth, development and behaviour can be found in 

Colvin et al., (2006).  Concentrations of amino acids have been shown to be greater in 

infected cassava, and these may benefit B. tabaci fitness (Colvin et al., 1999, 2006). 

However, other laboratory studies have found that the status of cassava disease and B. 

tabaci (i.e. viruliferous or non-viruliferous for East African cassava mosaic virus, EACMV) had 

no significant effect on life history factors, sex ratio, and developmental period, or percent 

adult emergence (Thompson, 2011). Additionally, the longevity of B. tabaci was shown to be 

reduced when they carry viruses such as Tomato yellow leaf curl virus (TYLCV) (Berlinger et 

al., 1996). So whilst infection status plays some role in altering the bottom-up resources for 

B. tabaci, we cannot say when and how this will lead to high abundance in a field situation. 

 

Non-cassava host plants  

B. tabaci is a polyphagous herbivore that can potentially use a wide range of different host 

plants in cassava production landscapes. Evidence from outside of Africa (Belotti, 2005) and 

from West Africa (Burban et al., 1992) shows that B. tabaci can have very different 

associations with different host plants in different locations indicating the likelihood of host-

plant associated genotypes. Research in West Africa showed two genotypes of B. tabaci; one 

polyphagous on a range of plants (excluding cassava) and the second found only on 

Euphorbia species (this group includes cassava) (Burban et al., 1992). Laarif et al., (2015) 

found that B. tabaci MED (formally named biotype Q) preferred host plants in the families 

Verbenaceae and Malvaceae, and MEAM1 (formally named biotype B) were found on 

Cucurbitaceae and Solanaceae. SSA2 only occurred on Datura and eggplant (Laarif et al., 

2015). Their results support the argument that the genetic differentiation of B. tabaci 
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species does not operate at the plant species level, but more likely in response to broader 

taxonomic grouping, for example plant families. Table 4 documents host plants that have 

been recorded in recent publications that included a genetic determination of the species. 

Most of these rely on adults (which are highly mobile) recorded on host plants, except 

Sseruwagi et al., (2006) who used nymphs to confirm the results obtained with adults for 

host plant colonization. There is a supposition that the number of eggs laid on a plant is a 

better indicator of a preferred host compared to counts of adults (Laarif et al., 2015). 

Further information is required that shows clear species-host plant relationships in field 

contexts, such as preference tests and tests of nymphal development on host plants (not just 

presence/absence). 

 

Experiments transferring B. tabaci from natal host plants to different local host plants result 

in failure or variable establishment.  These results were used to support the idea that there 

are different B. tabaci genotypes with restricted host ranges (Burban et al., 1992). However, 

this research did not test the influence of host plant transfer on ability of B. tabaci to 

transmit disease. Research by Antony (2006) showed that natal host plants influence the 

ability of B. tabaci to transmit Indian cassava mosaic virus (ICMV). Whereas B. tabaci reared 

from cassava could transmit ICMV to cassava, B. tabaci reared on sweet potato were unable 

to transmit ICMV to cassava. There was a significant difference in the presence of the 

cyanide detoxifying enzymes in cassava reared B. tabaci compared to those reared on sweet 

potato. Together, the results show the ability of B. tabaci to adapt to different host plants.   

   

Intercropping cassava with other crop plants (e.g. coffee, maize, sweet potato, bean, 
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groundnut) is common practice in many parts of East Africa. However, beyond saying if a 

crop is likely to be a host plant or not, we cannot yet make recommendations about which 

intercrop would be most useful for reducing B. tabaci abundance on cassava. Intercropping 

cassava with maize was shown to influence B. tabaci in the Ivory Coast (Fargette et al., 

1988), although the mechanism here may not be related to host-plant preferences, but 

rather host plant availability and physical barriers (i.e. maize are not host plants and may 

create a barrier to accessing host plants). Intercropping cassava with cowpea has been 

shown to decrease numbers of B. tabaci in Colombia (Gold et al., 1989). Results of surveying 

cassava cultivars for pests and CMD in Uganda in 2007 showed that cassava that was 

intercropped had significantly less B. tabaci than monocrops. Results from this study also 

showed adjacent cassava had no effect on populations of B. tabaci. Local cassava cultivars 

had more CMD, but improved cultivars had a greater density of B. tabaci nymphs (Night et 

al., 2011). Experiments intercropping cassava with Vigna unguiculata and V. radiata (cowpea 

and green gram mung bean) showed reduced B. tabaci populations and severity of CMD. 

Disease-free cuttings of two cultivars (one susceptible local cultivar, and one improved 

cultivar) were used in field experiments. Compared to monocrop treatments, the cultivars 

intercropped with mung bean had significantly less B. tabaci and disease incidence and 

severity for both the local and improved cultivar (Uzokwe et al., 2016).  

 

Spatial and temporal arrangement of host plants 

As well as the influence of intercropping per se on B. tabaci populations in cassava fields, the 

spatial and temporal arrangement of crops and other potential non-crop hosts around 

cassava fields may also influence population growth and abundance in the crop field, 
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especially early in the growing season. In theory, if host plants surrounding cassava fields 

facilitated the early arrival (and high numbers of colonizers) of the first generation of B. 

tabaci into the cassava field in the early stages of the crop, this may lead to an outbreak. 

Furthermore, if the spatial and temporal arrangement of host plants negatively impacted the 

dynamics of natural enemies of B. tabaci this could also lead to an outbreak.  

 

In a farming landscape where a species of B. tabaci (MEAM1) has been shown to be 

polyphagous with several crops and wild host plants suitable to support population growth 

(Queensland, Australia, Sequeira et al., 2009; De Barro, 2012), it was possible to develop a 

landscape model to simulate how the spatial and temporal arrangement of host plants 

influences B. tabaci abundance and ‘outbreaks’. The model simulations indicated that peak 

densities of MEAM1 B. tabaci were higher for low or non-suitable crops than for crops with a 

medium suitability. This counter-intuitive result was explained by the fact that medium 

suitability winter crops supported high parasitoid (Eretmocerus hayati) populations, which 

can suppress B. tabaci populations in summer crops (De Barro, 2012; Kristensen et al., 2013). 

Therefore, both the surrounding landscape, and crop rotation choices had a significant effect 

on simulated B. tabaci population dynamics. 

 

Understanding how the farming landscapes in East Africa offer resources for both B. tabaci 

and its natural enemies is challenging due to the variegated nature of the land-use patterns 

characteristic of smallholder farming. Often there are multiple crops planted in each field or 

garden and rotation practices are flexible and dependent on the family, village, and regional 

demand for certain food-types. However, studies to quantify the effect (even is small) of the 
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spatial and temporal arrangement of host plants is needed because this knowledge may lead 

to easily adoptable changes in management practices. 

 

Natural enemies 

Breeding cassava cultivars that are resistant to disease has been the main approach used to 

manage epidemics of CMD. However, as part of an integrated management plan to control 

B. tabaci identifying ways to enhance naturally occurring predators and parasitic wasps also 

needs to be considered (Legg et al., 2003). Fishpool & Burban (1994) noted there were 30 

parasitoids of B. tabaci worldwide, and 40 generalist predators. However, the ecology and 

impact of parasitoids and predators of B. tabaci in East Africa remains relatively unknown.  

 

Regarding predators, Phytoseiidae mites, such as Euseius scutalis, have been recorded 

predating B. tabaci populations on cassava in Kenya (Otim-Nape et al., 1995), and a mirids, 

such as Nesidiocoris tenuis, have predated B. tabaci on other crops such as tomato (Calvo et 

al., 2012). Results from petri dish experiments with B. tabaci from cotton showed that the 

predatory mite Amblyseius aleyrodis Elbadry, readily consumed B. tabaci eggs in a no-choice 

environment (Elbadry, 1968). Similarly, from work carried out in the USA Euseius hibisci were 

shown to consume and complete their development on B. tabaci (Meyerdirk & Coudriet, 

1985). Other predators from around the world of B. tabaci nymphs include Stethorus jejunus 

Casey, Coccinellidae, Holoborus pallidicornis (Cameron) Staphylinidae, Scolothrips latipennis 

Priesner, and Thysanoptera (Fishpool & Burban, 1994). The Neuropteran Conwentzia 

africana Meinander is considered an important predator of B. tabaci (Legg et al., 2003). 

Serangium sp. (Coleoptera: Coccinellidae) can complete their development feeding on 
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juvenile stages of B. tabaci on cassava (Asiimwe et al., 2007). No-choice laboratory 

experiments showed that Serangium larvae could consume over 1000 nymphs in total. The 

maximum number of nymphs consumed per day was mid-way through their development, 

when Serangium larvae consumed over 200 nymphs per day (Asiimwe et al., 2007). We 

know that cultivars of cassava with different morphologies can influence the activities of 

predators such as Typhlodromalus aripo, the mite that preys on the pest cassava green mite 

Mononychellus tanajoa (Zundel et al., 2009). 

 

Legg (2003) lists the parasitoids attacking Bemisia genus in Sub-Saharan Africa. Thirty-four 

species of Encarsia and 14 species of Eretmocerus, with Eretmocerus mundus Mercet and 

Encarsia sophia Girault and Dodd being the most dominant (Legg et al., 2003). Surveys of B. 

tabaci parasitoids in cassava in Tanzania resulted in 10 species of parasitoid (Guastella et al. 

2015a). Hoelmer (1995) summarised several papers that suggested that parasitoids may be 

insufficient to control B. tabaci without other control methods. However, parasitism rates of 

up to 58% have been recorded in Uganda (Table 5). Some work has been completed to 

quantify the impact of parasitoids on B. tabaci. Eretmocerus mundus and Encarsia sophia 

were shown to parasitise B. tabaci on cassava in Uganda and accounted for 34% parasitism 

of fourth instar nymphs (Legg, 1995). Significantly higher number of B. tabaci and the two 

species of parasitoids occurred on the CMD resistant cultivar compared to a susceptible 

cultivar although parasitism rate was similar. Although not tested for specifically the cultivar 

and presence or absence of CMD did not seem to influence parasitism rates. Percent 

parasitism was recorded as <20%, and on three occasions <50%. However, results showed a 

significant negative relationship between parasitism rate and nymph numbers indicating 
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that these parasitoids did not respond in a density dependent manner (Otim et al., 2006). 

Life history studies conducted under field conditions showed that dislodgement was the key 

mortality factor for eggs and that parasitism (mostly by E. sophia and E. mundus) caused the 

highest mortality to fourth instar nymphs. There was no difference in results from the 

treatments exposed to, or sheltered from, the rain (Asiimwe et al., 2007).  

 

There has been little research to understand how different cassava cultivars might influence 

the activities of natural enemies of B. tabaci. We know that cultivars of cassava with 

different morphologies can influence predators such as T. aripo (the mite that preys on M. 

tanajoa, Zundel et al., 2009), and there have been some basic experiments conducted using 

parasitoids (Otim et al., 2008a). However, a comprehensive understanding of cultivar 

impacts at higher trophic levels is critically needed. 

 

Competition with other herbivores on cassava 

Competition between B. tabaci and other herbivores on cassava may impact the abundance 

of B. tabaci. For example, the cassava green mite M. tanajoa (CGM) is often found on the 

top leaves of the cassava plant, making these leaves less suitable for B. tabaci adults (Legg et 

al., 2015). Interspecific interactions between pests on the same crop can significantly 

influence invertebrate behaviour and host plant defences; for example, the duration and 

density of the aphid Myzus persicae on tomato significantly affected the number of B. tabaci 

(Tan et al., 2014). We could find no studies that examine the interactions between the 

community of pest and non-pest herbivores on cassava in East Africa.  
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Endosymbionts 

Some evidence exists that endosymbiotic bacteria within B. tabaci can have both positive 

and negative effects on B. tabaci fitness (Kontsedalov et al., 2008; Himler et al., 2011; Ghosh 

et al., 2015). Portiera aleyrodidarum is a primary obligate bacterial endosymbiont of B. 

tabaci, and is essential to their development. As well as obligate bacteria, they have an 

association with many facultative bacteria or secondary endosymbionts. In theory, these 

bacteria may confer some advantage for transmission of CMBs by B. tabaci and help them 

adapt to new host plants (Gottlieb et al., 2010, Kilot et al., 2014).  

 

The association between facultative secondary endosymbionts and various species of B. 

tabaci was explored using samples collected in Tanzania from cassava and adjacent host 

plants, mostly crops and one weed (Tajebe et al., 2014a, see graphic depicting relationships 

between different groups of B. tabaci such as SSA1-SG1). Most B. tabaci collected from 

cassava were SSA1 and most were uninfected by any of the secondary symbionts. A later 

study found contrasting results (Ghosh et al., 2015). Samples of B. tabaci were collected 

from cassava crops across East African countries were found to be infected with a range of 

endosymbionts, with the predominant species being Wolbachia, Rickettsia and 

Arsenophonus. The prevalence of these secondary endosymbionts including Wolbachia 

varied characteristically across each B. tabaci population (Ghosh et al., 2015). Association of 

the endosymbionts varied across geographical boundaries and the B. tabaci species. SSA1-

SG3 in coastal eastern Africa had high levels of Arsenophonus and Rickettsia in single or 

mixed infections (84%), while a small proportion (13%) was free of detectable secondary 

endosymbionts (Ghosh et al., 2015). In contrast, SSA1-SG1 collected in the highland regions 
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of Uganda and around Lake Victoria had different secondary endosymbiont profiles. About 

25% of SSA1-SG1 individuals were infected with Arsenophonus and Rickettsia in single or 

mixed infections, while equal proportion of endosymbiont-free (38%) and Wolbachia-

infected individuals (37%) were found in Uganda. In laboratory studies, all three bacteria 

(Wolbachia, Arsenophonus and Rickettsia) were shown to negatively impact B. tabaci 

population development by reducing adult emergence and simultaneously increasing nymph 

development time, thereby reducing number of adults and the number of generations that 

can be developed per unit time (Ghosh et al., 2015). In addition to several factors discussed 

above, it has been proposed that high levels of bacteria-free B. tabaci, which are fitter and 

more fecund, may have contributed to high abundances in certain regions. Similar effects 

have been observed in Drosophila and mosquitoes infected with Wolbachia (McMeniman & 

O’Neill, 2010). Thus, it is possible that the negative effects of endosymbionts in B. tabaci 

have been important population control mechanisms in these regions. 

 

Abiotic factors 

Altitude 

There is some evidence to suggest that cassava virus infection was lower in areas above 800 

metres above sea level (Nyirenda et al., 1993 cited in Legg (1994a)). Historically it has been 

noted that at high altitudes (>1,000 metres above sea-level) there are less plant disease 

problems and an absence of B. tabaci in cassava, presumably due to cold temperatures. In 

general, there is evidence of a trend of declining CBSD incidence with increasing altitude in 

the coastal zone of Tanzania, but not in the lake zone (Jeremiah et al., 2014). However, the 

mechanism underlying any altitudinal variations seen (e.g. temperature) has not been 
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tested. 

 

Climate and Weather 

As with all invertebrate pest species, long-term climate patterns and short term weather 

events will influence population growth and development of B. tabaci. However, drawing 

conclusions beyond general statements is challenging due to a lack of information. In general 

B. tabaci populations are favoured by high temperatures and moderate rainfall (Sseruwagi et 

al., 2004). Recent analyses of B. tabaci adult abundance and environmental factors have 

shown that abundance was higher with high minimum temperatures and lower mean annual 

rainfall in the coastal zone of Tanzania (Jeremiah et al., 2014). However, in the lake zone of 

Tanzania mean annual rainfall and the length of the growing season were the most 

important environmental factors. Some studies note the times of the year when 

temperatures are low and the environment is unsuitable for B. tabaci therefore you are 

likely to see low numbers (Mbewe et al., 2015).  At a finer-scale, we know that micro-climate 

variability within a field can influence the numbers of B. tabaci found on cassava plants. B. 

tabaci adults decrease as planting density decreased and canopy temperatures increased. 

An increase in plant shoots also resulted in less CMD (Otim-Nape & Ingroot, 1986) at the 

plant-level.  

 

Other factors and hypotheses 

Pesticides 

The overuse of pesticides and rapid development of resistance in B. tabaci has been shown 

to cause high abundance and change B. tabaci species diversity in other cropping systems 
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around the world (e.g. Crowder et al., 2008). For example, a shift from B. tabaci MED species 

to MEAM1 species was found in cotton fields in Israel and this change in species composition 

had an impact on resistance to insecticides, with one population showing less resistance to 

Insect Growth Regulators (IGR) (Horowitz & Ishaaya, 2014). However, the use of pesticides 

by East African smallholder farmers has historically been low due to their cost and 

availability, although their use is increasing each year (de Bon et al., 2014). Insecticide 

application in cassava production landscapes in East Africa is limited to crops such as 

tomatoes and other fruit and vegetables (de Bon et al., 2014). Documented statistics on 

pesticides use (and especially insecticide use) patterns in cassava by smallholder farmers in 

East Africa is rare. Surveys of honeybee hives throughout Kenya showed low levels of 

pesticide contamination in the hives (Muli et al., 2014). Documentation of the change in 

insecticide use patterns over time (products, active ingredients, crops, and application rates) 

may help predict the onset of resistance development and help in the development of an 

integrated resistance management strategy. 

 

A new invasive species in East Africa 

Given the confusion surrounding the taxonomy of species in the B. tabaci complex, we 

cannot rule out that there have been one or multiple incursions of an entirely new species 

into this region. As an analogous example from outside of East Africa, the exotic pest B. 

tabaci MEAM1 was first detected in Australia on ornamental plants in 1994, but it was not 

until 2001 that high numbers on fruit and vegetable required control (Gunning et al., 1995, 

Sequeria et al., 2009). After this new species entered East Africa it may have been better 

able to exploit resources in cassava production landscapes, avoid attack by natural enemies, 



 
 

27 

and outcompete domestic B. tabaci species. In addition to natural spread within the African 

continent, movement of species into new areas is possible via human-assisted transport 

(Caciagli, 2007). As yet there is no empirical evidence to support this idea in East Africa 

(Table 2). 

 

Hybridization  

The B. tabaci abundance associated with the spread of the severe CMD pandemic in Uganda 

in the late 1990s was believed to be due to the appearance of an invasive SSA2 B. tabaci 

species (Legg et al., 2002; Maruthi et al., 2004). However, subsequent studies by Sseruwagi 

(2005) and Mugerwa et al. (2012) showed SSA2 to be less abundant in Uganda post-invasion. 

Instead, the areas with high B. tabaci populations had a distinct clade of SSA1 (SSA1-SG1), 

and what was believed to be a hybrid of SSA2 and SSA1. More recently, Tajebe et al. (2014) 

also suggested hybridization as the underlying cause in the change from B. tabaci SSA2 to B. 

tabaci SSA1-SG1 in Tanzania, and that the CMD pandemic was now associated with high 

abundances of B. tabaci SSA1-SG1 genotype. However, empirical studies to confirm this 

hypothesis in East Africa have not yet occurred.  

 

Empirically detecting such changes in field studies on a pest complex can be very challenging 

(but not impossible, see discussion in Lui et al., 2012). The process of hybridization is unlikely 

to be reflected by the mtDNA COI gene currently used for identification purposes. Given the 

mitochondrial DNA genome’s overall maternal inheritance property and its general lack of 

recombination (e.g., Crozier, 1990), hybridization between a population carrying the SSA2 

mtDNA COI haplotypes with the SSA1 mtDNA COI haplotypes would result in the hybrid 
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offspring being either SSA2 or SSA1 mtDNA COI haplotypes, but is unlikely to generate the 

SSA1-SG1 mtDNA COI haplotype signature. To show evidence of hybridization we need to 

focus on changes in patterns in the nuclear genome, and then link these patterns with 

ecologically relevant fitness traits that may increase population growth and abundance on 

cassava.   

 

Knowledge gaps 

Given that many of the factors that potentially influence B. tabaci abundance listed in Table 

1 have had very little research surrounding them in East Africa, and may interact with each 

other in antagonistic ways, identifying which are the critical knowledge gaps is challenging. 

Our focus here is on identifying knowledge gaps, which if filled, may lead to more 

sustainable and durable solutions to B. tabaci associated crop damage in East Africa. 

Underpinning all the knowledge gaps highlighted below is the species identification issue. 

Without well-documented species nomenclature, set within a robust framework for 

identifying new species, the biological and ecological information generated may be lost 

rapidly. The high priority knowledge gaps are:  

 

Which East African B. tabaci species commonly use cassava as a reproductive host plant? 

Whilst B. tabaci adults are highly mobile and can be found on a number of plants, 

establishing which species commonly use cassava as a reproductive host plant (i.e. they can 

oviposit and complete nymphal development) is important. It is these species for which we 

need to devise targeted management interventions to control. To address this research 

question requires the identification of large numbers of field-collected nymphs using nuclear 
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molecular markers, and reciprocal crossing experiments using cultures developed from 

nymphs reared through to adults. This is also the first step in establishing if these target 

species also use alternate host plants besides cassava.   

 

To what extent do non-cassava host plants contribute to the population dynamics of B. 

tabaci and the spread of cassava diseases? 

Whilst establishing the diversity of potential host plants that can be used by B. tabaci in 

production landscapes is important, we must take this one step further and establish if, 

when and how, these alternate host plants impact B. tabaci abundance and disease spread 

in cassava crops. For example, can alternate host plants for B. tabaci serve as reservoirs of 

viruses that may be transmitted to cassava (Alabi et al., 2008)? If an alternative host plant is 

identified, but is relatively rare in the landscape will it impact the population dynamics in 

cassava? Conversely, if an alternate host plant is common in the landscape, will its removal 

impact population dynamics in cassava? There are straightforward management 

recommendations that can be developed from improved understanding about alternate host 

plants and the role they play in an agricultural landscape. 

 

How does the proportional availability of infected versus un-infected cassava plants in a 

landscape influence disease risk and spread? 

It has been suggested that B. tabaci shows preferences for infected cassava plants, and 

infection can alter the performance of B. tabaci at the population-level. However, we do not 

understand how this manifests in real cassava production landscapes, with a diversity of 

cassava cultivars, showing different levels of disease. Modelling the spread of CMD via 
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infected cuttings assuming that B. tabaci prefer infected over uninfected plants, in 

combination with the proportion of infected plants available, indicated this could have major 

implications for disease spread. Incorporating information at a landscape scale about which 

species of B. tabaci are efficient vectors of each virus would also improve model predictions.  

 

How can we use choice of cassava cultivars in production landscapes to reduce population 

abundances of B. tabaci? 

Besides establishing the effect of different cassava cultivars on the fitness and performance 

of B. tabaci, we need to provide recommendations that lead to population reductions or 

lower risk of outbreaks at the landscape-level. An understanding of the relationship between 

disease dynamics across a landscape, B. tabaci movement between cultivars, and cultivar 

diversity and abundance is needed. From this understanding we may be able to provide 

location-specific recommendations about the selection of ideal cultivars, guidance on 

rouging, and cassava-free periods. Historically, the adoption of new and improved cassava 

cultivars has been variable within countries, so more effort to understand the best 

mechanisms for ensuring that the new cultivars that are adopted also lead to B. tabaci 

population reductions would be valuable. 

 

What is the impact of natural enemies in East Africa on B. tabaci and can they reduce the 

risk of outbreaks? 

Whilst we know there are a diversity of natural enemies present in cassava fields that can 

cause mortality of B. tabaci, we cannot say what role these species play in reducing the 

frequency or likelihood of outbreaks. Given that cassava is a crop with a relatively long 
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growth season (compared to many vegetables), and now receives relatively little pesticide 

applications, it is important that we explore further the potential impact of natural enemies. 

Furthermore, the integration of natural enemies with other management options (e.g. host 

plant resistance and habitat management) is critical. 

 

There is very little information about the natural enemies that prey on different stages of B. 

tabaci in field conditions and the impact they have on B. tabaci. Therefore, there is a need to 

better understand their biology and behaviour (life history of individual species), their 

relationships and interactions with other predators and parasitoids, and quantify the impact 

they have on B. tabaci populations. For some groups, we lack fundamental information on 

whether they frequently predate on B. tabaci. For others factors, such as the effect of 

alternative host plants (i.e. do any provide an alternative source of natural enemies to 

recolonise cassava crops and attack B. tabaci), dispersal ability, response to semiochemicals, 

and methods to increase fitness and population growth need to be determined. It is 

important to quantify the scale at which natural enemies may have an impact (i.e. within a 

few tens of metres or within 100 metres of a source field), to enable us to make specific 

management recommendations to farmers. 

 

How can we sustainably manage the use of insecticides in East Africa to delay or avoid 

resistance in B. tabaci? 

If insecticide use increases in the coming years, such as in vegetable crops in near cassava, or 

in cassava itself, there is the potential for B. tabaci species attacking cassava to be exposed 

to strong resistance selection pressures. Experiences in cotton production landscapes 
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elsewhere have shown that resistance can develop quickly in B. tabaci (Crowder et al., 2008; 

Gnankine et al., 2013) and studies should consider establishing baseline-levels of resistant 

alleles in populations now. Furthermore, the testing and development of products based on 

newer chemistries, which have less non-target impacts, needs to be conducted in East 

Africa.  

 

What research methodologies do we need to develop now to enable scientists to ask the 

right questions in the future? 

Throughout this review we have highlighted methodological limitations that restrict research 

and the questions that scientists can address. For example, we need a smarter way of 

estimating B. tabaci adult numbers in fields with high abundances. In cases where nymphal 

or egg data may provide a more informative picture of a certain ecological process counting 

adults could be avoided. We can develop new and fast approaches to count, collect, record 

and identify nymphs if that is what is needed to address a research question. A field-based 

method that allows us to separate virus infection borne by B. tabaci, from that borne by 

cuttings (or a combination of both agents) would greatly aid in our understanding of B. 

tabaci as a vector (see an example in Tajebe et al., 2014). A rapid diagnostic test for virus 

infection at the cutting stage would enable researchers to decide which factors they wanted 

to examine in their study, and be confident of their results. In addition, advent of infield 

diagnostic strip would allow scientists detect virus at given time period and easily map 

patterns of disease spread. In another example, the recent development of a transcriptome 

technique that can provide data from one B. tabaci individual by Sseruwagi et al. (2017 

submitted), will reduce reliance on the use of isolines for transcriptomics studies, and could 
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therefore help to resolve some of the urgent questions about the biological differences 

between B. tabaci species.   

 

What are the economic trade-offs associated with different management options for 

smallholder farmers, and what networks need to be available to support adoption? 

Fundamental to the deployment of new management interventions, and adoption by 

farmers, is strong extension networks with smallholder farmers and the wider cassava value-

chain actors. Without this network the adoption of durable solutions to B. tabaci control will 

be slow or unlikely to occur. Furthermore, a complete economic assessment of the trade-

offs for smallholder farmers associated with adopting different practices is needed to ensure 

that management options are set in the current-day economic realities of these farmers. 

Often researchers spend a lot of time understanding the biophysical constraints on a system 

but neglect the linked socio-economic system in which farmers operate. To bring about 

change in how this pest is managed in the future we need to assess both systems at the 

same time. 

 

Conclusions 

Given the right combination of factors we have identified above, many species of B. tabaci 

within the complex have the potential to become a pest at any one point in time and exhibit 

outbreaks in certain locations. Furthermore, these critical factors may vary from country-to-

country and even region-to-region across East Africa. Our challenge is greater than just 

identifying factors, we must go one step further and identify which factors are the most 

important for smallholder farmers to manage to minimise the risk of outbreaks. This review 
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represents a comprehensive summary of the knowledge to date, and should be used to guide 

future research questions by scientists all over the world addressing this challenge. 
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Table 1. Studies quantifying the mean number of B. tabaci on cassava. General method used 

was counting the numbers of adults observed on the top five expanded leaves on 30 plants 

per field and on cassava aged 3-6 months after planting (Sseruwagi et al., 2004). There was 

some variation in methods between studies. 

Mean count of B. tabaci  Country  Citation 

Max. weekly 35 per plant (method not confirmed) Ivory Coast Fargette et al., 1988 

Max. 14 per plant, over 6 months, on 25 plants 
(one site) 

Ivory Coast Fauquet et al., 1988 

Max. 35  Ivory Coast Fargette et al., 1990 

Max. 16 per shoot Uganda Otim-Nape, 1993 
(thesis) 

4.6 ± 0.54 adults 
5.0 ± 0.38 adults 

Uganda Gibson & Otim-Nape, 
1997b  

Max. 21.8 ± 55.9 adults 
Min. 0.2 ± 0.3 adults 

Zambia Muimba-Kankolongo 
et al., 1997 

Max.  ~ 12 adults Uganda Legg & Ogwal, 1998 

Max. > 3 adults per shoot 
Min. 1-3 
(One shoot = top 5 expanded leaves)  

Uganda 
  
 

Otim-Nape et al., 
2001 

Average Max. 37 adults 
Average Min. 0.2 adults 

Uganda Colvin et al., 2004 

Mean nymph count = 35.8 for resistant cultivars  
Mean nymph count = 17.2 susceptible cultivars  

Uganda Otim et al., 2006 
  

0.74 ±  0.03 inter-cropped cassava  
0.94 ±  0.07 mono-cropped cassava 

Rwanda 
 

Night et al., 2011 

Max. average 39.2 ± 4.4 occurred for cultivar 
I92/0067  
Min. average 5.4 ± 1.7 for cultivar Njule Red  

Uganda Omongo et al., 2012 

Max. 2.12 
Min. 0.02 

Zambia Chikoti et al., 2013 

Max. 71.99±22.07 
Min. 2.35±0.86 

Tanzania Tajebe et al., 2014a 

Max. 50 
Min. 0 

Tanzania Jeremiah et al., 2014 

0.4 per plant Malawi Mbewe et al., 2015 

Average range 1.0 - 37.5  
 

Tanzania Uzokwe et al., 2016 
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Table 2. Potential factors influencing B. tabaci abundance on cassava (does not include 

interactions between these factors).  

Factors Potential mechanisms Citations from East Africa 
for empirical studies 

Cassava cultivar 
 

Leaf architecture (e.g. width of leaves) 
Growth habit (e.g. long versus short growing 
season) 
Plant chemistry 

Omongo et al., 2012 

Cassava age Number of new leaves at top of plant 
Plant chemistry 

Sseruwagi et al., 2003 

Infection status of cassava Whitefly fecundity enhanced on infected hosts 
Promotion of emigration 

Otim-Nape et al., 1995, 
Colvin et al., 2006 

Non-cassava host plants Other crops as host plants 
Natural vegetation and weeds as host plants 

Laarif et al., 2015 (but 
from Tunisia), Tajebe et 
al., 2014 

Spatial arrangement and 
amount of host plants 
surrounding cassava fields 

More resources at important times, more 
resources for natural enemies. 

None  

Other pests on cassava Cassava green mite damage to top leaves Legg et al., 2015 (but not 
an empirical test) 

Altitude  Temperature changes, or other changes. Thresh et al., 1997; 
Jeremiah et al., 2014 
  

Climate Long-term changes in temperature and 
precipitation 

Jeremiah et al., 2014 

Weather Heavy rainfall events 
Dry conditions (drought) 

Robertson, 1987; 
Jeremiah et al., 2014 

Natural enemies Predators consuming B. tabaci 
Parasitoids using B. tabaci as host 

Otim et al., 2005, 2006; 
Asiimwe et al., 2007; 
Asiimwe et al., 2007; 
Otim et al., 2008a 

Pesticides Resistance in B. tabaci 
Pesticides killing natural enemies or 
competitors 

None 

Endosymbionts Presence of some endosymbiont species can 
decrease the number of adults emerging, 
increase development time, thus reducing 
overall population development 

Ghosh et al., 2015 

New invasive species in East 
Africa 

Totally new species has taken over from local 
species in cassava (species turnover) 

None 

Hybridization 'invader biotype' None 
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Table 3. Review articles with relevant information about B. tabaci biology and ecology. 

Citation Topics covered 

Legg et al., 
2014b 

● Historical account of virus outbreaks. 
● Emergence of “superabundant” B. tabaci. 
● Control options for B. tabaci. 

Legg et al., 
2011 

● Regional epidemiology of CMV and CBSV pandemics across Africa. 
● Comparison of characteristics of CMD and CBSD outbreaks. 

Patil & 
Fauquet, 
2010 

● Cassava mosaic geminiviruses: actual knowledge and perspectives.  
● Very comprehensive review of the viruses. 

Legg & 
Thresh, 2000 

● CMV disease dynamics in East Africa. 
● Mechanisms behind the spread of the CMD pandemic. 

Legg, 1999 
 

● Describes the pandemic of CMD across east and central Africa. 
● Strategies to control the pandemic. 

Otim-Nape et 
al., 1995 

● B. tabaci and cassava mosaic virus disease in Africa ch 28 (34 pages) in 
Bemisia: 1995. Taxonomy, biology, damage, control and management. 

● Very comprehensive treatment of all aspects of the disease and vector 
story. 

Fishpool & 
Burban, 1994 

● Biology of B. tabaci including morphology, taxonomy, bionomics. 
● Ecology on cassava in Africa. 
● Some discussion about natural enemies and control. 

Legg, 1994 ● Ecology of whitefly and CMV pathosystem 
● Factors affecting population development of B. tabaci; temperature, 

climate, rainfall, host plant chemistry, architecture and age, natural 
enemies. 

● Interactions between B. tabaci and other cassava pests. 
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Table 4 Host plants of B. tabaci in East Africa from the published literature 

Host Plant Common name B. tabaci  genotype * References 

Manihot esculenta cassava Ug1, Ug2, SSA1,IO  Sseruwagi et al., 2005; 
Tajebe et al., 2014 

Ocimum gratissimum wild basil Ug3 Sseruwagi et al., 2005 

Cucurbita pepo squash Ug4, MED,EA1 Sseruwagi et al., 
2005;Tajebe et al., 
2014b 

Cucurbita 
sativus 

cucumber Ug4 Sseruwagi et al., 2005 

Leonotis nepetifolia weed Ug4 
EA1, MED, IO 

Sseruwagi et al., 2005; 
Tajebe et al., 2014 

Pavonia urens Malvaceae, hibiscus-like 
flower 

Ug4 Sseruwagi et al., 2005 

Commelina 
benghalensis 

wandering dew Ug7 Sseruwagi et al., 2005 

Phaseolus vulgaris bean Ug7 Sseruwagi et al., 2005 

Abelmoschus esculentus okra Ug1, Ug 6, EA1 Sseruwagi et al., 2005; 
Tajebe et al., 2014 

Lycopersicon esculentum tomato Ug1, Ug8, SSA1, IO Sseruwagi et al., 2005; 
Tajebe et al., 2014; 
Delatte et al., 2011 

Gossypium hirsutum cotton Ug8, EA1 Sseruwagi et al., 2005; 
Tajebe et al., 2014 

 Ipomoea batatas Sweet potato Ug1, EA1, MED, SSA1 Tajebe et al., 2014 
  

Solanum melongena 
and Datura sp.  

Eggplant SSA1 (very few 
specimens), Tunisia 

Laarif et al., 2015 

Euphorbia heterophylla,  
Aspilia africana  

Non-crop weeds  Ug1  Sseruwagi et al., 2005 

Manihot glaziovii 
Jatropha gossypifolia 

Tree cassava Ug1 Sseruwagi et al., 2006 

Lantana spp. Lantana and Hibiscus MED, in Tunisia  Laarif et al., 2015 

*The names used here is the same as authors used in their paper, however see section on 

species identification. 
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Table 5. Records of parasitism of B. tabaci from field studies in East Africa 

citation location/study 
type 

Host plant Parasitoid species 
recorded 

Percentage 
parasitism  

Otim et 
al., 2005 

Namulonge, 
Uganda. Survey 
data. 

Cassava with 
B. tabaci 

Eretmocerus mundus 
Encarsia mineoi 
Encarsia sophia 
Encarsia 
“blackhead”(undescri
bed) 

40-58% 

Otim et 
al., 2006 

Namulonge, 
Uganda. Field 
study on cassava 
cultivars. 

Cassava with 
B. tabaci 

Eretmocerus mundus 
Encarsia sophia 

20-58% 

Otim et 
al., 
2008b 

Namulonge, 
Uganda. Potted 
plant study. 

Cassava 
potted plants 
with B. 
tabaci 

Eretmocerus mundus 
Encarsia sophia 

11-67% hirsute 
cultivar 
0-42% glabrous 
(trial 1) 
0-46% hirsute 
cultivar 
0-67% glabrous 
(trial 2) 

Guastella 
et al., 
2015b 

Mwanza, 
Shinyanga and 
Tabora. Survey 
data 

Cassava Encarsia sophia 
En. guadeloupae 
En. dispersa 
En. lutea 
En.mineoi 
En. sp. pr. 
circumsculpturata 
Eretmocerus mundus 
Er. sp. pr. hayati or 
Queenslandensis 
Er. sp. 1 
Er. sp. 2 

Parasitism levels 
not determined 
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Figure 1. Timeline of events of B. tabaci and associated disease ‘outbreaks’ in East Africa 1 
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