13 research outputs found

    Optimal filtering of optical and weak lensing data to search for galaxy clusters: application to the COSMOS field

    Full text link
    Galaxy clusters are usually detected in blind optical surveys via suitable filtering methods. We present an optimal matched filter which maximizes their signal-to-noise ratio by taking advantage of the knowledge we have of their intrinsic physical properties and of the data noise properties. In this paper we restrict our application to galaxy magnitudes, positions and photometric redshifts if available, and we also apply the filter separately to weak lensing data. The method is suitable to be naturally extended to a multi-band approach which could include not only additional optical bands but also observables with different nature such as X-rays. For each detection, the filter provides its significance, an estimate for the richness and for the redshift even if photo-z are not given. The provided analytical error estimate is tested against numerical simulations. We finally apply our method to the COSMOS field and compare the results with previous cluster detections obtained with different methods. Our catalogue contains 27 galaxy clusters with minimal threshold at 3-sigma level including both optical and weak-lensing information.Comment: 15 pages, 15 figures, accepted for publication in MNRA

    3D-Matched-Filter Galaxy Cluster Finder I: Selection Functions and CFHTLS Deep Clusters

    Full text link
    We present an optimised galaxy cluster finder, 3D-Matched-Filter (3D-MF), which utilises galaxy cluster radial profiles, luminosity functions and redshift information to detect galaxy clusters in optical surveys. This method is an improvement over other matched-filter methods, most notably through implementing redshift slicing of the data to significantly reduce line-of-sight projections and related false positives. We apply our method to the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) Deep fields, finding ~170 galaxy clusters per square degree in the 0.2 <= z <= 1.0 redshift range. Future surveys such as LSST and JDEM can exploit 3D-MF's automated methodology to produce complete and reliable galaxy cluster catalogues. We determine the reliability and accuracy of the statistical approach of our method through a thorough analysis of mock data from the Millennium Simulation. We detect clusters with 100% completeness for M_200 >= 3.0x10^(14)M_sun, 88% completeness for M_200 >= 1.0x10^(14)M_sun, and 72% completeness well into the 10^(13)M_sun cluster mass range. We show a 36% multiple detection rate for cluster masses >= 1.5x10^(13)M_sun and a 16% false detection rate for galaxy clusters >~ 5x10^(13)M_sun, reporting that for clusters with masses <~ 5x10^(13)M_sun false detections may increase up to ~24%. Utilising these selection functions we conclude that our galaxy cluster catalogue is the most complete CFHTLS Deep cluster catalogue to date.Comment: 18 pages, 17 figures, 5 tables; v2: added Fig 5, minor edits to match version published in MNRA

    Large-scale structure and dynamics of the most X-ray luminous galaxy cluster known - RX J1347-1145

    Get PDF
    We present photometric, spectroscopic and weak lensing analysis of the large-scale structure and dynamics of the most X-ray luminous galaxy cluster known, RX J1347−1145, at z= 0.451. We spectroscopically confirmed 47 new members with Low Dispersion Survey Spectrograph 3 (LDSS3) on the Magellan telescope. Together with previously known members, we measure a new velocity dispersion of 1163 ± 97 km s−1. The mass inferred from our velocity dispersion is M200= 1.16+0.32−0.27× 1015 M⊙, with r200= 1.85 Mpc, under the assumption of a singular isothermal sphere. We also present a weak lensing analysis using deep Canada–France–Hawaii Telescope (CFHT) data on this cluster, and find a deprojected mass of 1.47+0.46−0.43× 1015 M⊙ within r200, in excellent agreement with our dynamical estimate. Thus, our new dynamical mass estimate is consistent with that from weak lensing and X-ray studies in the literature, resolving a previously claimed discrepancy. We photometrically detect and spectroscopically confirm another massive cluster with σ= 780 ± 100 km s−1 and M200= 3.4+1.4−1.1× 1014 M⊙∌ 7 Mpc south-west of RX J1347−1145, which we refer to as RXJ1347−SW. Our spectroscopic survey reveals a possible excess of galaxies in velocity space in the region between RX J1347−1145 and RXJ1347−SW; comparing with simulations, this excess appears consistent with that expected from a large filamentary structure traced by galaxies connecting these two clusters

    CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey - Imaging Data and Catalogue Products

    No full text
    We present data products from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). CFHTLenS is based on the Wide component of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). It encompasses 154 deg^2 of deep, optical, high-quality, sub-arcsecond imaging data in the five optical filters u^*g'r'i'z'. The article presents our data processing of the complete CFHTLenS data set. We were able to obtain a data set with very good image quality and high-quality astrometric and photometric calibration. Our external astrometric accuracy is between 60-70 mas with respect to SDSS data and the internal alignment in all filters is around 30 mas. Our average photometric calibration shows a dispersion on the order of 0.01 to 0.03 mag for g'r'i'z' and about 0.04 mag for u^* with respect to SDSS sources down to i &lt;= 21. In the spirit of the CFHTLS all our data products are released to the astronomical community via the Canadian Astronomy Data Centre. We give a description and how-to manuals of the public products which include image pixel data, source catalogues with photometric redshift estimates and all relevant quantities to perform weak lensing studies

    CFHTLenS: the Canada-France-Hawaii Telescope Lensing Survey - imaging data and catalogue products

    Get PDF
    International audienceWe present data products from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). CFHTLenS is based on the Wide component of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). It encompasses 154 deg2 of deep, optical, high-quality, sub-arcsecond imaging data in the five optical filters u*g'r'i'z'. The scientific aims of the CFHTLenS team are weak gravitational lensing studies supported by photometric redshift estimates for the galaxies. This paper presents our data processing of the complete CFHTLenS data set. We were able to obtain a data set with very good image quality and high-quality astrometric and photometric calibration. Our external astrometric accuracy is between 60 and 70 mas with respect to Sloan Digital Sky Survey (SDSS) data, and the internal alignment in all filters is around 30 mas. Our average photometric calibration shows a dispersion of the order of 0.01-0.03 mag for g'r'i'z' and about 0.04 mag for u* with respect to SDSS sources down to iSDSS ≀ 21. We demonstrate in accompanying papers that our data meet necessary requirements to fully exploit the survey for weak gravitational lensing analyses in connection with photometric redshift studies. In the spirit of the CFHTLS, all our data products are released to the astronomical community via the Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLens/query.html. We give a description and how-to manuals of the public products which include image pixel data, source catalogues with photometric redshift estimates and all relevant quantities to perform weak lensing studies

    THE NEXT GENERATION VIRGO CLUSTER SURVEY (NGVS). I. INTRODUCTION TO THE SURVEY

    No full text
    International audienceThe Next Generation Virgo Cluster Survey (NGVS) is a program that uses the 1 deg(2) MegaCam instrument on the Canada-France-Hawaii Telescope to carry out a comprehensive optical imaging survey of the Virgo cluster, from its core to its virial radius-covering a total area of 104 deg(2)-in the u*griz bandpasses. Thanks to a dedicated data acquisition strategy and processing pipeline, the NGVS reaches a point-source depth of g approximate to 25.9mag (10 sigma) and a surface brightness limit of mu(g) similar to 29 mag arcsec(-2) (2 sigma above the mean sky level), thus superseding all previous optical studies of this benchmark galaxy cluster. In this paper, we give an overview of the technical aspects of the survey, such as areal coverage, field placement, choice of filters, limiting magnitudes, observing strategies, data processing and calibration pipelines, survey timeline, and data products. We also describe the primary scientific topics of the NGVS, which include: the galaxy luminosity and mass functions; the color-magnitude relation; galaxy scaling relations; compact stellar systems; galactic nuclei; the extragalactic distance scale; the large-scale environment of the cluster and its relationship to the Local Supercluster; diffuse light and the intracluster medium; galaxy interactions and evolutionary processes; and extragalactic star clusters. In addition, we describe a number of ancillary programs dealing with “foreground” and “background” science topics, including the study of high-inclination trans-Neptunian objects; the structure of the Galactic halo in the direction of the Virgo Overdensity and Sagittarius Stream; the measurement of cosmic shear, galaxy-galaxy, and cluster lensing; and the identification of distant galaxy clusters, and strong-lensing events

    The Next Generation Virgo Cluster Survey (NGVS). I. Introduction to the survey

    No full text
    The Next Generation Virgo Cluster Survey (NGVS) is a program that uses the 1 deg 2 MegaCam instrument on the Canada-France-Hawaii Telescope to carry out a comprehensive optical imaging survey of the Virgo cluster, from its core to its virial radius - covering a total area of 104 deg 2 - in the u*griz bandpasses. Thanks to a dedicated data acquisition strategy and processing pipeline, the NGVS reaches a point-source depth of g 25.9 mag (10\u3c3) and a surface brightness limit of \u3bc g 29 mag arcsec -2 (2\u3c3 above the mean sky level), thus superseding all previous optical studies of this benchmark galaxy cluster. In this paper, we give an overview of the technical aspects of the survey, such as areal coverage, field placement, choice of filters, limiting magnitudes, observing strategies, data processing and calibration pipelines, survey timeline, and data products. We also describe the primary scientific topics of the NGVS, which include: the galaxy luminosity and mass functions; the color-magnitude relation; galaxy scaling relations; compact stellar systems; galactic nuclei; the extragalactic distance scale; the large-scale environment of the cluster and its relationship to the Local Supercluster; diffuse light and the intracluster medium; galaxy interactions and evolutionary processes; and extragalactic star clusters. In addition, we describe a number of ancillary programs dealing with "foreground" and "background" science topics, including the study of high-inclination trans-Neptunian objects; the structure of the Galactic halo in the direction of the Virgo Overdensity and Sagittarius Stream; the measurement of cosmic shear, galaxy-galaxy, and cluster lensing; and the identification of distant galaxy clusters, and strong-lensing events. \ua9 2012. The American Astronomical Society. All rights reserved..Peer reviewed: YesNRC publication: Ye
    corecore