126 research outputs found

    Mass profiles and concentration-dark matter relation in X-ray luminous galaxy clusters

    Full text link
    (Abriged) Assuming that the hydrostatic equilibrium holds between the intracluster medium and the gravitational potential, we constrain the NFW profiles in a sample of 44 X-ray luminous galaxy clusters observed with XMM-Newton in the redshift range 0.1-0.3. We evaluate several systematic uncertainties that affect our reconstruction of the X-ray masses. We measure the concentration c200, the dark mass M200 and the gas mass fraction within R500 in all the objects of our sample, providing the largest dataset of mass parameters for galaxy clusters in this redshift range. We confirm that a tight correlation between c200 and M200 is present and in good agreement with the predictions from numerical simulations and previous observations. When we consider a subsample of relaxed clusters that host a Low-Entropy-Core (LEC), we measure a flatter c-M relation with a total scatter that is lower by 40 per cent. From the distribution of the estimates of c200 and M200, with associated statistical (15-25%) and systematic (5-15%) errors, we use the predicted values from semi-analytic prescriptions calibrated through N-body numerical runs and measure sigma_8*Omega_m^(0.60+-0.03)= 0.45+-0.01 (at 2 sigma level, statistical only) for the subsample of the clusters where the mass reconstruction has been obtained more robustly, and sigma_8*Omega_m^(0.56+-0.04) = 0.39+-0.02 for the subsample of the 11 more relaxed LEC objects. With the further constraint from the fgas distribution in our sample, we break the degeneracy in the sigma_8-Omega_m plane and obtain the best-fit values sigma_8~1.0+-0.2 (0.75+-0.18 when the subsample of the more relaxed objects is considered) and Omega_m = 0.26+-0.01.Comment: 21 pages. A&A in press. Minor revisions to match accepted version. Corrected 2nd and 3rd column in Table 3, and equation (A.4

    Cool core remnants in galaxy clusters

    Full text link
    X ray clusters are conventionally divided into two classes: "cool core" (CC) and "non cool core" (NCC) objects, on the basis of the observational properties of their central regions. Recent results have shown that the cluster population is bimodal (Cavagnolo et al. 2009). We want to understand whether the observed distribution of clusters is due to a primordial division into two distinct classes rather than to differences in how these systems evolve across cosmic time. We systematically search the ICM of NCC clusters in a subsample of the B55 flux limited sample of clusters for regions which have some characteristics typical of cool cores, namely low entropy gas and high metal abundance We find that most NCC clusters in our sample host regions reminiscent of CC, i. e. characterized by relative low entropy gas (albeit not as low as in CC systems) and a metal abundance excess. We have dubbed these structures "cool core remnants", since we interpret them as what remains of a cool core after a heating event (AGN giant outbursts in a few cases and more commonly mergers). We infer that most NCC clusters have undergone a cool core phase during their life. The fact that most cool core remnants are found in dynamically active objects provides strong support to scenarios where cluster core properties are not fixed "ab initio" but evolve across cosmic time.Comment: Accepted for publication in Astronomy & Astrophysics. Version with full resolution figures available at: http://www.iasf-milano.inaf.it/~rossetti/public/CCR/rossetti.pd

    Galaxy cluster outskirts: a universal entropy profile for relaxed clusters?

    Full text link
    We fit a functional form for a universal ICM entropy profile to the scaled entropy profiles of a catalogue of X-ray galaxy cluster outskirts results, which are all relaxed cool core clusters at redshift below 0.25. We also investigate the functional form suggested by Lapi et al. and Cavaliere et al. for the behaviour of the entropy profile in the outskirts and find it to fit the data well outside 0.3r200 . We highlight the discrepancy in the entropy profile behaviour in the outskirts between observations and the numerical simulations of Burns et al., and show that the entropy profile flattening due to gas clumping calculated by Nagai & Lau is insufficient to match observations, suggesting that gas clumping alone cannot be responsible for all of the entropy profile flattening in the cluster outskirts. The entropy profiles found with Suzaku are found to be consistent with ROSAT, XMM-Newton and Planck results.Comment: 5 pages, 5 figures. Accepted for publication in MNRA

    X-ray observations of PKS 0745-191 at the virial radius: Are we there yet?

    Full text link
    We wish to reassess the properties of the ICM at large radii in the galaxy cluster PKS 0745-191 in light of the recent Suzaku measurements. We analyze an archival 10.5 ksec ROSAT/PSPC observation to extract the surface-brightness profile of PKS 0745-191 and infer the deprojected density profile. We then compare the ROSAT surface-brightness profile with the Suzaku result. We perform a mass analysis combining the ROSAT density profile and the published temperature profiles from different instruments. We find that the ROSAT surface-brightness profile is statistically inconsistent (7.7 sigma) with the Suzaku result around and beyond the value of r200 estimated by Suzaku. We argue that, thanks to its large field of view and low background, ROSAT/PSPC is to the present day the most sensitive instrument to low surface-brightness X-ray emission in the 0.4-2.0 keV band. We also note that the Suzaku temperature and mass profiles are at odds with the results from at least two other satellites (XMM-Newton and Swift). The difference in surface brightness between ROSAT and Suzaku is most likely explained by the existence of additional foreground components at the low Galactic latitude of the source, which were not taken into account in the Suzaku background modeling. In light of our mass analysis, we conclude that any estimate of the fraction of the virial radius reached by X-ray measures is affected by systematic errors of the order of 25%. As a result, the properties of the ICM at the virial radius are still uncertain, and the Suzaku results should be considered with caution.Comment: 6 pages, 5 figures, accepted for publication in A&

    The gas distribution in the outer regions of galaxy clusters

    Full text link
    We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond \sim r500. Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond \sim 0.3r200, which we explain by a different distribution of the gas in the two classes. Beyond \sim r500, galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. [Abridged]Comment: The data for the average profiles and individual clusters can be downloaded at: http://www.isdc.unige.ch/~deckert/newsite/The_Planck_ROSAT_project.htm

    XMM-Newton observations of the merging galaxy cluster CIZA J2242.8+5301

    Full text link
    We studied the intracluster medium of the galaxy cluster CIZA J2242.8+5301 using deep XMM-Newton observations. The cluster hosts a remarkable 2-Mpc long, ~50-kpc wide radio relic that has been nicknamed the "Sausage". A smaller, more irregular counter-relic is also present, along with a faint giant radio halo. We analysed the distribution of the ICM physical properties, and searched for shocks by trying to identify density and temperature discontinuities. East of the southern relic, we find evidence of shock compression corresponding to a Mach number of 1.3, and speculate that the shock extends beyond the length of the radio structure. The ICM temperature increases at the northern relic. More puzzling, we find a "wall" of hot gas east of the cluster centre. A partial elliptical ring of hot plasma appears to be present around the merger. While radio observations and numerical simulations predict a simple merger geometry, the X-ray results point towards a more complex merger scenario.Comment: Extensively revised and expanded, with 18 pages and 17 figure

    the influence of nanoscale morphology on the resistivity of cluster assembled nanostructured metallic thin films

    Get PDF
    We have studied in situ the evolution of the electrical resistivity of Fe, Pd, Nb, W and Mo cluster-assembled films during their growth by supersonic cluster beam deposition. We observed resistivity of cluster-assembled films several orders of magnitude larger than the bulk, as well as an increase in resistivity by increasing the film thickness in contrast to what was observed for atom-assembled metallic films. This suggests that the nanoscale morphological features typical of ballistic films growth, such as the minimal cluster?cluster interconnection and the evolution of surface roughness with thickness, are responsible for the observed behaviour

    Richness Dependence of the Recent Evolution of Clusters of Galaxies

    Full text link
    We revisit the issue of the recent dynamical evolution of clusters of galaxies using a sample of ACO clusters with z<0.14, which has been selected such that it does not contain clusters with multiple velocity components nor strongly merging or interacting clusters, as revealed in X-rays. We use as proxies of the cluster dynamical state the projected cluster ellipticity, velocity dispersion and X-ray luminosity. We find indications for a recent dynamical evolution of this cluster population, which however strongly depends on the cluster richness. Poor clusters appear to be undergoing their primary phase of virialization, with their ellipticity increasing with redshift with a rate de/dz ~ 2.5, while the richest clusters show an ellipticity evolution in the opposite direction (with de/dz ~ -1.2), which could be due to secondary infall. When taking into account sampling effects due to the magnitude-limited nature of the ACO cluster catalogue we find no significant evolution of the cluster X-ray luminosity, while the velocity dispersion increases with decreasing redshift, independent of the cluster richness, at a rate dsigma/dz ~ -1700 km/sec.Comment: 10 pages, MNRAS in pres

    The Radial Dependence of Temperature and Iron Abundance: Galaxy Clusters from z=0.14 to z=0.89

    Full text link
    Using archival Chandra and XMM-Newton data on 35 galaxy clusters, we measured average temperature and metallicity profiles for clusters based separated by temperature, cooling time, and redshift. Our results show no evidence for significant changes in the metallicity or temperature profiles with redshift once these selection effects are taken into account.Comment: 13 pages, 4 figures, v2 simply changes the acceptance date from \today to June 6, 200
    • …
    corecore