116 research outputs found

    Exploring Patterns of Activities of Daily Living in the Home Environment

    Get PDF
    Background: Senior citizens tend to live longer and longer independently. Judging whether a senior person is still capable of living on his own is often based on the occurrence of incidents, with all consequences thereof. In the specific case of early dementia, the symptoms are not immediately apparent and the occurrence and severity of incidents progress gradually over time. In this case, the children or grandchildren are burdened by the question whether or not the elderly adult can still live safely and independently in his or her own home. This decision is only based on input obtained through incidental visits. We believe that the capability of independent living can only be objectively judged, by a health professional, if long term objective information on the elderly person's daily activities of living (ADL) is available

    How does gender influence the recognition of cardiovascular risk and adherence to self-care recommendations? : a study in polish primary care

    Get PDF
    Background: Studies have shown a correlation between gender and an ability to change lifestyle to reduce the risk of disease. However, the results of these studies are ambiguous, especially where a healthy lifestyle is concerned. Additionally, health behaviors are strongly modified by culture and the environment. Psychological factors also substantially affect engagement with disease-related lifestyle interventions. This study aimed to examine whether there are differences between men and women in the frequency of health care behavior for the purpose of reducing cardiovascular risk (CVR), as well as cognitive appraisal of this type of risk. We also aimed to identify the psychological predictors of engaging in recommended behavior for reducing the risk of cardiovascular disease after providing information about this risk in men and women. Methods: A total of 134 consecutive eligible patients in a family practice entered a longitudinal study. At initial consultation, the individual’s CVR and associated health burden was examined, and preventive measures were recommended by the physician. Self-care behavior, cognitive appraisal of risk, and coping styles were then assessed using psychological questionnaires. Six months after the initial data collection, the frequency of subjects’ self-care behavior was examined. Results: We found an increase in health care behavior after providing information regarding the rate of CVR in both sexes; this increase was greater for women than for men. Women followed self-care guidelines more often than men, particularly for preventive measures and dietary advice. Women were more inclined to recognize their CVR as a challenge. Coping style, cognitive appraisal, age, level of health behaviors at baseline and CVR values accounted for 48% of the variance in adherence to self-care guidelines in women and it was 52% in men. In women, total risk of CVD values were most important, while in men, cognitive appraisal of harm/loss was most important. Conclusions: Different predictors of acquisition of health behavior are encountered in men and women. Our results suggest that gender-adjusted motivation models influencing the recognition process need to be considered to optimize compliance in patients with CVR

    The Two-Component Signal Transduction System CopRS of Corynebacterium glutamicum Is Required for Adaptation to Copper-Excess Stress

    Get PDF
    Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu2+ was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO) and a copper-transport ATPase (CopB). In addition, this region includes the copRS genes (previously named cgtRS9) which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR) and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress

    A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water

    Get PDF
    We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating T-binned (1 ∘C) data over a wide T range (−36 ∘C <T<−4 ∘C). Specifically, we intercompared the geometric surface area-based ice nucleation active surface site (INAS) density data derived from our measurements as a function of T, ns,geo(T). Additionally, we also compared the ns,geo(T) values and the freezing spectral slope parameter (Δlog(ns,geo)/ΔT) from our measurements to previous literature results. Results show all three cellulose materials are reasonably ice active. The freezing efficiencies of NCC samples agree reasonably well, whereas the diversity for the other two samples spans ≈ 10 ∘C. Despite given uncertainties within each instrument technique, the overall trend of the ns,geo(T) spectrum traced by the T-binned average of measurements suggests that predominantly supermicron-sized cellulose particles (MCC and FC) generally act as more efficient ice-nucleating particles (INPs) than NCC with about 1 order of magnitude higher ns,geo(T)

    Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets

    Get PDF
    In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m3 volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species

    Universal Alcohol/Drug Screening in Prenatal Care: A Strategy for Reducing Racial Disparities? Questioning the Assumptions

    Get PDF
    Agencies and organizations promoting universal screening for alcohol and drug use in prenatal care argue that universal screening will reduce White versus Black racial disparities in reporting to Child Protective Services (CPS) at delivery. Yet, no published research has assessed the impact of universal screening on reporting disparities or explored plausible mechanisms. This review defines two potential mechanisms: Equitable Surveillance and Effective Treatment and identifies assumptions underlying each mechanism. It reviews published literature relating to each assumption. Research relating to assumptions underlying each mechanism is primarily inconclusive or contradictory. Thus, available research does not support the claim that universal screening for alcohol and drug use in prenatal care reduces racial disparities in CPS reporting at delivery. Reducing these reporting disparities requires more than universal screening

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies
    corecore