544 research outputs found

    Changes in photosynthetic electron transfer and state transitions in an herbicide-resistant D1 mutant from soybean cell cultures

    Get PDF
    The definitive version is available at: http://www.sciencedirect.com/science//journal/00052728Anomalies in photosynthetic activity of the soybean cell line STR7, carrying a single mutation (S268P) in the chloroplastic gene psbA that codes for the D1 protein of the photosystem II, have been examined using different spectroscopic techniques. Thermoluminescence emission experiments have shown important differences between STR7 mutant and wild type cells. The afterglow band induced by both white light flashes and far-red continuous illumination was downshifted by about 4 °C and the Q band was upshifted by 5 °C. High temperature thermoluminescence measurements suggested a higher level of lipid peroxidation in mutant thylakoid membranes. In addition, the reduction rate of P700+ was significantly accelerated in STR7 suggesting that the mutation led to an activation of the photosystem I cyclic electron flow. Modulated fluorescence measurements performed at room temperature as well as fluorescence emission spectra at 77 K revealed that the STR7 mutant is defective in state transitions. Here, we discuss the hypothesis that activation of the cyclic electron flow in STR7 cells may be a mechanism to compensate the reduced activity of photosystem II caused by the mutation. We also propose that the impaired state transitions in the STR7 cells may be due to alterations in thylakoid membrane properties induced by a low content of unsaturated lipids.This work was supported by grants from the Ministry of Education and Culture of Spain (BFU-BMC2004-04914-C02-01, BMC2002-00031 and BFU-BMC2005-07422-C02-01) and Andalusia Government (PAI CVI-261).Peer reviewe

    Loss of chloroplast protease SPPA function alters high light acclimation processes in Arabidopsis thaliana L. (Heynh.)

    Get PDF
    SPPA1 is a protease in the plastids of plants, located in non-appressed thylakoid regions. In this study, T-DNA insertion mutants of the single-copy SPPA1 gene in Arabidopsis thaliana (At1g73990) were examined. Mutation of SPPA1 had no effect on the growth and development of plants under moderate, non-stressful conditions. It also did not affect the quantum efficiency of photosynthesis as measured by dark-adapted Fv/Fm and light-adapted ΦPSII. Chloroplasts from sppA mutants were indistinguishable from the wild type. Loss of SPPA appears to affect photoprotective mechanisms during high light acclimation: mutant plants maintained a higher level of non-photochemical quenching of Photosystem II chlorophyll (NPQ) than the wild type, while wild-type plants accumulated more anthocyanin than the mutants. The quantum efficiency of Photosystem II was the same in all genotypes grown under low light, but was higher in wild type than mutants during high light acclimation. Further, the mutants retained the stress-related Early Light Inducible Protein (ELIP) longer than wild-type leaves during the early recovery period after acute high light plus cold treatment. These results suggest that SPPA1 may function during high light acclimation in the plastid, but is non-essential for growth and development under non-stress conditions

    The helminth product, ES-62, protects against airway inflammation by resetting the Th cell phenotype

    Get PDF
    We previously demonstrated inhibition of ovalbumin (OVA)-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct targeting of mast cells remained unclear as suppression of the Th2 phenotype of the inflammatory response, as measured by eosinophilia and IL-4 levels in the lungs, was also observed. We now show that inhibition of the lung Th2 phenotype is reflected in ex vivo analyses of draining lymph node recall cultures and accompanied by a decrease in the serum levels of total and OVA-specific IgE. Moreover, ES-62 also suppresses the lung infiltration by neutrophils that is associated with severe asthma and is generally refractory to conventional anti-inflammatory therapies, including steroids. Protection against Th2-associated airway inflammation does not reflect induction of regulatory T cell (Treg) responses (there is no increased IL-10 or Foxp3 expression) but rather a switch in polarisation towards increased T-bet expression and IFNγ production. This ES-62-driven switch in the Th1/Th2 balance is accompanied by decreased IL-17 responses, a finding in line with reports that IFNγ and IL-17 are counter-regulatory. Consistent with ES-62 mediating its effects via IFNγ-mediated suppression of pathogenic Th2/Th17 responses, we found that neutralising anti-IFNγ antibodies blocked protection against airway inflammation in terms of pro-inflammatory cell infiltration, particularly by neutrophils and lung pathology. Collectively, these studies indicate that ES-62, or more likely small molecule analogues, could have therapeutic potential in asthma, in particular for those subtypes of patients (e.g. smokers, steroid-resistant) who are refractory to current treatments

    Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids

    Get PDF
    The photosynthetic thylakoid has the highest level of lipid unsaturation of any membrane. In Arabidopsis thaliana plants grown at 22°C, approximately 70% of the thylakoid fatty acids are trienoic – they have three double bonds. In Arabidopsis, and other species, the levels of trienoic fatty acids decline substantially at higher temperatures. Several genetic studies indicate that reduced unsaturation improves photosynthetic function and plant survival at high temperatures. Here, these studies are extended using the Arabidopsis triple mutant, fad3-2 fad7-2 fad8 that contains no detectable trienoic fatty acids. In the short-term, fluorescence analyses and electron-transport assays indicated that photosynthetic functions in this mutant are more thermotolerant than the wild type. However, long-term photosynthesis, growth, and survival of plants were all compromised in the triple mutant at high temperature. The fad3-2 fad7-2 fad8 mutant is deficient in jasmonate synthesis and this hormone has been shown to mediate some aspects of thermotolerance; however, additional experiments demonstrated that a lack of jasmonate was not a major factor in the death of triple-mutant plants at high temperature. The results indicate that long-term thermotolerance requires a basal level of trienoic fatty acids. Thus, the success of genetic and molecular approaches to increase thermotolerance by reducing membrane unsaturation will be limited by countervailing effects that compromise essential plant functions at elevated temperatures

    Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    Get PDF
    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the detection of lipid peroxidation in the cell membranes

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth
    corecore