12 research outputs found

    Oxidative Thermal Sintering and Redispersion of Rh Nanoparticles on Supports with High Oxygen Ion Lability

    Get PDF
    The thermal sintering under oxidative conditions of Rh nanoparticles supported on oxides characterized by very different oxygen storage capacities (OSC) and labilities was studied at 750 and 850 °C. Under sintering conditions, significant particle growth occurred for Rh/γ-Al2O3 (up to 120% at 850 °C). In striking contrast, Rh/ACZ (alumina–ceria–zirconia) and Rh/CZ (ceria–zirconia) exhibited marked resistance to sintering, and even moderate (ca. −10% at 850 °C) to pronounced (ca. −60% at 850 °C) redispersion of the Rh. A model is proposed based on a double-layer description of metal–support interactions assigned to back-spillover of labile oxygen ions onto the Rh particles, accompanied by trapping of atomic Rh by the resulting surface oxygen vacancies. This model accounts for the observed resistance to sintering and actual redispersion of Rh, consistent with both alternative sintering mechanisms, namely Ostwald ripening (OR) or particle migration and coalescence (PMC)

    Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO2 Reforming of Methane.

    Get PDF
    The production of syngas (H2 and CO)-a key building block for the manufacture of liquid energy carriers, ammonia and hydrogen-through the dry (CO2-) reforming of methane (DRM) continues to gain attention in heterogeneous catalysis, renewable energy technologies and sustainable economy. Here we report on the effects of the metal oxide support (γ-Al2O3, alumina-ceria-zirconia (ACZ) and ceria-zirconia (CZ)) on the low-temperature (ca. 500-750 ∘C) DRM activity, selectivity, resistance against carbon deposition and iridium nanoparticles sintering under oxidative thermal aging. A variety of characterization techniques were implemented to provide insight into the factors that determine iridium intrinsic DRM kinetics and stability, including metal-support interactions and physicochemical properties of materials. All Ir/γ-Al2O3, Ir/ACZ and Ir/CZ catalysts have stable DRM performance with time-on-stream, although supports with high oxygen storage capacity (ACZ and CZ) promoted CO2 conversion, yielding CO-enriched syngas. CZ-based supports endow Ir exceptional anti-sintering characteristics. The amount of carbon deposition was small in all catalysts, however decreasing as Ir/γ-Al2O3 > Ir/ACZ > Ir/CZ. The experimental findings are consistent with a bifunctional reaction mechanism involving participation of oxygen vacancies on the support's surface in CO2 activation and carbon removal, and overall suggest that CZ-supported Ir nanoparticles are promising catalysts for low-temperature dry reforming of methane (LT-DRM)

    Stabilization of catalyst particles against sintering on oxide supports with high oxygen ion lability exemplified by Ir-catalyzed decomposition of N2O

    Get PDF
    Iridium nanoparticles deposited on a variety of surfaces exhibited thermal sintering characteristics that were very strongly correlated with the lability of lattice oxygen in the supporting oxide materials. Specifically, the higher the lability of oxygen ions in the support, the greater the resistance of the nanoparticles to sintering in an oxidative environment. Thus with γ-Al2O3 as the support, rapid and extensive sintering occurred. In striking contrast, when supported on gadolinia-ceria and alumina-ceria-zirconia composite, the Ir nanoparticles underwent negligible sintering. In keeping with this trend, the behavior found with yttria-stabilized zirconia was an intermediate between the two extremes. This resistance, or lack of resistance, to sintering is considered in terms of oxygen spillover from support to nanoparticles and discussed with respect to the alternative mechanisms of Ostwald ripening versus nanoparticle diffusion. Activity towards the decomposition of N2O, a reaction that displays pronounced sensitivity to catalyst particle size (large particles more active than small particles), was used to confirm that catalytic behavior was consistent with the independently measured sintering characteristics. It was found that the nanoparticle active phase was Ir oxide, which is metallic, possibly present as a capping layer. Moreover, observed turnover frequencies indicated that catalyst-support interactions were important in the cases of the sinter-resistant systems, an effect that may itself be linked to the phenomena that gave rise to materials with a strong resistance to nanoparticle sintering

    Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO2 reforming of methane

    Get PDF
    The effects of the metal oxide support on the activity, selectivity, resistance to carbon deposition and high temperature oxidative aging on the Rh-catalyzed dry reforming of methane (DRM) were investigated. Three Rh catalysts supported on oxides characterized by very different oxygen storage capacities and labilities (γ-Al 2O 3, alumina-ceria-zirconia (ACZ) and ceria-zirconia (CZ)) were studied in the temperature interval 400–750 °C under both integral and differential reaction conditions. ACZ and CZ promoted CO 2 conversion, yielding CO-enriched synthesis gas. Detailed characterization of these materials, including state of the art XPS measurements obtained via sample transfer between reaction cell and spectrometer chamber, provided clear insight into the factors that determine catalytic performance. The principal Rh species detected by post reaction XPS was Rh 0, its relative content decreasing in the order Rh/CZ(100%)>Rh/ACZ(72%)>Rh/γ-Al 2O 3(55%). The catalytic activity followed the same order, demonstrating unambiguously that Rh 0 is indeed the key active site. Moreover, the presence of CZ in the support served to maintain Rh in the metallic state and minimize carbon deposition under reaction conditions. Carbon deposition, low in all cases, increased in the order Rh/CZ < Rh/ACZ < Rh/γ-Al 2O 3 consistent with a bi-functional reaction mechanism whereby backspillover of labile lattice O 2− contributes to carbon oxidation, stabilization of Rh 0 and modification of its surface chemistry; the resulting O vacancies in the support providing centers for dissociative adsorption of CO 2. The lower apparent activation energy observed with CZ-containing samples suggests that CZ is a promising support component for use in low temperature DRM

    The relationship between primary hyperparathyroidism and thrombotic events: Report of three cases and a review of potential mechanisms

    No full text
    We have described three uncommon cases of patients who presented with clinical thrombotic events (stroke, pulmonary embolism and deep venous thrombosis) during the course of a hypercalcemia-induced hypercoagulable state. After thorough investigation, the diagnosis of primary hyperparathyroidism - due to a parathyroid adenoma - was established in all cases. The association between hypercalcemia and venous or arterial thrombosis has been previously described; however, relevant data are still insufficient. The existing evidence in the field was reviewed and the interesting underlying pathophysiologic mechanisms were also discussed. Further studies are required to shed more light on the unusual, still intriguing relationship between calcium and thrombosis

    Support induced effects on the Ir nanoparticles activity, selectivity and stability performance under CO2 reforming of methane

    No full text
    Summarization: The production of syngas (H2 and CO)—a key building block for the manufacture of liquid energy carriers, ammonia and hydrogen—through the dry (CO2−) reforming of methane (DRM) continues to gain attention in heterogeneous catalysis, renewable energy technologies and sustainable economy. Here we report on the effects of the metal oxide support (γ-Al2O3, alumina-ceria-zirconia (ACZ) and ceria-zirconia (CZ)) on the low-temperature (ca. 500–750 ∘C) DRM activity, selectivity, resistance against carbon deposition and iridium nanoparticles sintering under oxidative thermal aging. A variety of characterization techniques were implemented to provide insight into the factors that determine iridium intrinsic DRM kinetics and stability, including metal-support interactions and physicochemical properties of materials. All Ir/γ-Al2O3, Ir/ACZ and Ir/CZ catalysts have stable DRM performance with time-on-stream, although supports with high oxygen storage capacity (ACZ and CZ) promoted CO2 conversion, yielding CO-enriched syngas. CZ-based supports endow Ir exceptional anti-sintering characteristics. The amount of carbon deposition was small in all catalysts, however decreasing as Ir/γ-Al2O3 > Ir/ACZ > Ir/CZ. The experimental findings are consistent with a bifunctional reaction mechanism involving participation of oxygen vacancies on the support’s surface in CO2 activation and carbon removal, and overall suggest that CZ-supported Ir nanoparticles are promising catalysts for low-temperature dry reforming of methane (LT-DRM).Presented on: Nanomaterial

    Dormant SOX9-Positive Cells Facilitate MYC-Driven Recurrence of Medulloblastoma

    No full text
    Relapse is the leading cause of death in patients with medulloblas-toma, the most common malignant pediatric brain tumor. A better understanding of the mechanisms underlying recurrence could lead to more effective therapies for targeting tumor relapses. Here, we observed that SOX9, a transcription factor and stem cell/glial fate marker, is limited to rare, quiescent cells in high-risk medulloblastoma with MYC amplification. In paired primary-recurrent patient samples, SOX9-positive cells accumulated in medulloblastoma relapses. SOX9 expression anti-correlated with MYC expression in murine and human medulloblastoma cells. However, SOX9-positive cells were plastic and could give rise to a MYC high state. To follow relapse at the single-cell level, an inducible dual Tet model of medulloblastoma was developed, in which MYC expression was redirected in vivo from treatment-sensitive bulk cells to dormant SOX9-positive cells using doxycycline treatment. SOX9 was essential for relapse initiation and depended on suppression of MYC activity to promote therapy resistance, epithelial-mesenchymal transition, and immune escape. p53 and DNA repair pathways were downregulated in recurrent tumors, whereas MGMT was upregulated. Recurrent tumor cells were found to be sensitive to treatment with an MGMT inhibitor and doxorubicin. These findings suggest that recurrence-specific targeting coupled with DNA repair inhibition comprises a potential therapeutic strategy in patients affected by medulloblastoma relapse.Significance: SOX9 facilitates therapy escape and recurrence in medulloblastoma via temporal inhibition of MYC/MYCN genes, revealing a strategy to specifically target SOX9-positive cells to prevent tumor relapse
    corecore