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Highlights 

 High OSCs’ oxide supports promote CO-enriched syngas production of Rh-catalysed DRM 

 Low carbon deposition was revealed, increasing in the order Rh/CZ<Rh/ACZ<Rh/γ-Al2O3 

 O2- back-spillover from CZ to Rh particles determines Rh state and its DRM activity 

 100% Rh0 active phase on Rh/CZ and only 55% Rh/Al2O3 were found after DRM  

 Reduced apparent activation energy for Rh/CZ indicates a promising LT-DRM material 

 

Abstract 

 

The effects of the metal oxide support on the activity, selectivity, resistance to carbon deposition 

and high temperature oxidative aging on the Rh-catalyzed dry reforming of methane (DRM) 

were investigated. Three Rh catalysts supported on oxides characterized by very different 

oxygen storage capacities and labilities (γ-Al2O3, alumina-ceria-zirconia (ACZ) and ceria-

zirconia (CZ)) were studied in the temperature interval 400-750 oC under both integral and 

differential reaction conditions. ACZ and CZ promoted CO2 conversion, yielding CO-enriched 

synthesis gas. Detailed characterization of these materials, including state of the art XPS 

measurements obtained via sample transfer between reaction cell and spectrometer chamber, 

provided clear insight into the factors that determine catalytic performance. The principal Rh 

species detected by post reaction XPS was Rh0, its relative content decreasing in the order 
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Rh/CZ(100%)>Rh/ACZ(72%)>Rh/γ-Al2O3(55%). The catalytic activity followed the same 

order, demonstrating unambiguously that Rh0 is indeed the key active site. Moreover, the 

presence of CZ in the support served to maintain Rh in the metallic state and minimize carbon 

deposition under reaction conditions. Carbon deposition, low in all cases, increased in the order 

Rh/CZ<Rh/ACZ<Rh/γ-Al2O3 consistent with a bi-functional reaction mechanism whereby 

backspillover of labile lattice O2- contributes to carbon oxidation, stabilization of Rh0 and 

modification of its surface chemistry; the resulting O vacancies in the support providing centers 

for dissociative adsorption of CO2. The lower apparent activation energy observed with CZ-

containing samples suggests that CZ is a promising support component for use in low 

temperature DRM. 

 

KEYWORDS: Dry reforming of methane; active sites; synthesis gas; rhodium nanoparticles; 

support effects; CO2 activation; oxygen storage capacity; resistance to carbon deposition; 

oxygen ions spillover.   

 

1. Introduction  

 

Synthesis gas (H2+CO) is a critical intermediate in the chemical industry used as a feedstock for 

the production of hydrogen, ammonia, and Fischer-Tropsch-derived liquid energy carriers [1-6]. 

Accordingly, its production by means of hydrocarbon reforming has attracted much academic 

and industrial interest. Currently, due to the abundance of natural gas, methane is most 

commonly employed for this purpose, while locally produced biogas is emerging as an attractive 
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alternative feedstock [7,8]. Methane reforming can be achieved by reaction with steam, CO2 (dry 

reforming, DRM, reaction 1) or by partial oxidation with O2.  

CH4+ CO2 ⇋ 2CO + 2H2 ΔΗο298 = 247 kJ mol-1 (1) 

The recent resurgent interest in DRM in part reflects the fact that both reactants are important 

greenhouse gases. Moreover, compared to steam reforming or partial oxidation, DRM offers the 

advantage of producing synthesis gas with a molar H2/CO ratio close to unity, which is ideal for 

the Fischer–Tropsch industry [1-6, 9-14]. In addition, the reaction provides a route for direct 

utilization of biogas produced via anaerobic microbial digestion or fermentation of biomass 

(waste water treatment facilities, agriculture wastes) which consists mainly of CH4 (50–70%) 

and CO2 (25–50%) [7,8]. Furthermore, internal reforming of biogas by means of DRM enables 

its use in directly-fuelled solid oxide fuel cells, which are efficient and eco-friendly devices for 

the generation of electrical power [7,15-18].  

Due to its high endothermicity, DRM is typically operated in the temperature range 650-800 oC, 

conditions under which a number of side reactions are also favored, including the reverse water 

gas shift reaction (reaction 2), methane cracking (reaction 3), the Boudouard reaction (reaction 4) 

and carbon oxidation reactions (reactions 5-7) [19-21]: 

H2 + CO2 ⇋ CO + H2O ΔΗο298 = +41 kJ mol-1 (2) 

CH4 ⇋ 2H2 + C ΔΗο298 = +75 kJ mol-1 (3) 

2CO ⇋ CO2 + C ΔΗο298 = -172 kJ mol-1 (4) 

C + O2 → CO2 ΔΗο298 = -394 kJ mol-1 (5) 
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C + ½ O2 → CO ΔΗο298 = -110 kJ mol-1 (6) 

C + H2O → CO + H2 ΔΗο298 = +131 kJ mol-1 (7) 

Reactions (2)-(7) affect both the H2/CO ratio and as a result of cumulative carbon deposition, the 

catalyst’s lifetime which is a major problem in many catalytic systems that have been 

investigated for DRM [1-6].  Consequently, development of selective and robust DRM catalysts, 

especially for use at intermediate temperatures, remains a major research challenge in the field of 

heterogeneous catalysis [6]. 

Due to their low cost, Ni-based catalysts have been extensively studied for DRM application, but 

they suffer from excessive carbon deposition and severe thermal sintering [2, 3, 10-13, 20-27]. 

Partially successful attempts to reduce these adverse effects include the use of strongly basic 

supports and/or supports containing significant concentrations of oxygen ion vacancies, such as 

mixed metal oxides incorporating La2O3, CaO, Sm2O3, PrO2, Yb2O3, ZrO2 or CeO2 [20-35]. For 

example, CexZr1-xO2-δ composites, which are widely used in three-way catalytic chemistry due to 

their high oxygen storage capacity (OSC) [36-38], improved both the efficiency and long term 

stability of Ni catalysts in DRM [20,27,34,35]. Noble metal-based catalysts exhibit comparable 

DRM activity to Ni formulations, but also greater resistance to carbon deposition, [3, 9-11, 39-

47], which offsets their high cost for potential large-scale application.   

Because of their favorable resistance to both sintering and coking [44-49], Rh catalysts have 

recently attracted much interest due to their promising performance in methane reforming by 

means of steam-, oxy-, di- and tri-reforming methodologies [26, 50-54]. To our knowledge, the 

only work related to the use of CexZr1-xO2-δ-based supports for Rh-based catalysts is that of Yuan 

et al. [55], who investigated the effect of ceria-zirconia doping on the performance of Rh/MgO 
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catalysts in the autothermal steam reforming of methane (CH4 + H2O + O2). They found that 

Ce0.5Zr0.5O2-δ/MgO induced significant enhancement of both catalyst stability and selectivity 

towards H2 formation, the latter ascribed to increased water gas shift activity. In comparison, Rh-

catalyzed DRM has received less attention and there are no reports on the effect of incorporating 

CeO2-ZrO2 containing composites into such catalysts.  

Here we report the DRM catalytic behavior of well-characterized Rh nanoparticles supported on 

three different oxides with very different lattice oxygen labilities ranging from γ-Al2O3, to 

alumina-ceria-zirconia (ACZ: 80wt% Al2O3-20wt% Ce0.5Zr0.5O2-δ) to ceria-zirconia (CZ: 

Ce0.5Zr0.5O2-δ). The oxygen ion lability (or lack of it) characteristic of these materials is related to 

their O2- mobility and oxygen storage capacity, which determine their propensity to provide 

spillover oxygen to metal particles dispersed on their surfaces [56-60]. This property can 

strongly modify the intrinsic catalytic activity of metal nanoparticles [56-60] and the 

investigation of such effects in the context of Rh-catalyzed DRM is the main objective of the 

present investigation.  Catalytic measurements were carried out over a wide range of conditions 

over well-characterized samples and supplemented by state of the art XPS measurements 

involving in situ sample transfer between reaction cell and spectrometer chamber, without 

exposure to laboratory air.  It was unambiguously demonstrated that Rh0 species are the principal 

active sites for methane activation, stabilized by O2- backspillover from the two CeO2-containing 

metal oxides that possess high oxygen ion lability. The corresponding catalysts exhibited 

enhanced selectivity towards CO-enriched syngas formation, ascribed to the ease of formation of 

O2- vacancies that acted as centers for dissociative adsorption of CO2. They were also 

characterized by lower apparent activation energies, which is of particular interest with respect to 

low-temperature DRM applications. The results are rationalized in terms of a detailed bi-
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functional reaction mechanism involving both metal and oxide phases, including the effects of 

metal-support interaction. 

2. Experimental  

2.1 Catalyst preparation 

Rhodium (III) nitrate solution (10%w/v Rh in 20-25wt% HNO3) was purchased from Acros 

Organics. Al(NO3)3·9H2O, Zr(NO3)2·H2O and Ce(NO3)3·6H2O were supplied by Alfa Aesar and 

γ-Αl2Ο3 powder was obtained from Engelhard. Alumina-ceria-zirconia (ACZ, 80wt% Al2O3 - 

20wt% Ce0.5Zr0.5O2-δ) and ceria-zirconia (CZ, Ce0.5Zr0.5O2-δ) supports were prepared by co-

precipitation of the corresponding metal precursor salts [61] followed by calcination at 800oC for 

1 h, whereas γ-Αl2Ο3 was used as received. 

Supported rhodium catalysts with a 1.0 wt% Rh nominal loading were prepared by the wet 

impregnation method. An appropriate amount of the support (γ-Al2O3, ACΖ or CZ) was 

impregnated under continuous stirring at 75 oC in a 2 mg Rh/mL concentrated solution of 

Rh(NO3)3. After water evaporation, the sample was dried at 110 °C for 12 h and then calcined in 

air at 450 °C for 1 h for nitrate precursor decomposition. The resulting powder was reduced at 

400 oC under 50% H2/He flow for 2 h followed by heating (20 oC/min) under 1% H2/He flow to 

800 °C, maintained for 1 h. Catalysts thus prepared are denoted in the following as “fresh” 

samples (Table 1). 

Table 1: Textural and morphological characteristics of the supporting materials and the 

corresponding fresh Rh catalysts 

Supports 

and 

Catalysts 

Chemical formulaa 
SBET 

(m2 g-1) 

Total 

pore 

volume 

Average 

pore size 

diameter 

Rh 

Dispersionb 

(%) 

Rh mean particle 

size (nm) 

measured by 
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(cm3 g-1) (nm) H2-

chem 
HRTEM 

γ-Al2O3 γ-Al2O3 178 0.60 13.5  - - 

Rh/γ-Al2O3 1wt%Rh/γ-Al2O3 160 0.57 14.2 88.3 1.2 1.3 ± 0.4 

ACZ 
80wt%Al2O3-

20wt%Ce0.5Zr0.5O2-δ 
149 0.29 7.9  - - 

Rh/ACZ 
0.8wt%Rh/(80wt%Al2O3-

20wt%Ce0.5Zr0.5O2-δ) 
136 0.28 8.2 77.4 1.8 1.5 ± 0.5 

CZ Ce0.5Zr0.5O2-δ 22 0.05 9.2  - - 

Rh/CZ 0.8wt%Rh/Ce0.5Zr0.5O2-δ 17 0.05 12.3 27.8 5.0 5.1 ± 1.7 

a Rh content measured by means of ICP-OES  

b based on H2 uptake values (42.9, 30.1 and 10.8 μmol H2 g-1 for Rh/γ-Αl2O3, Rh/ACZ and Rh/CZ respectively) 

measured by means of isothermal  H2 chemisorption at 0 oC. 

 

2.2 Characterization methods 

Textural and structural characteristics (total surface areas, pore volumes, morphology, total metal 

contents and dispersion) and redox properties of the synthesized catalysts were determined by 

BET, High-Resolution Transmission Electron Microscopy (HRTEM), Powder X-Ray Diffraction 

(PXRD), Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES), Isothermal 

hydrogen chemisorption at 0 oC, and H2-Temperature Programmed Reduction (H2-TPR). 

Specifically: 

BET measurements: Surface areas, average pore volume and mean pore size diameters were 

obtained from N2 adsorption–desorption isotherms at -196 oC and relative pressures in the range 

0.05–0.30 with a Quantachrome Nova 2200e.  

TEM measurements: High-resolution TEM images were obtained with an aberration corrected 

JEOL 2100-F microscope operated at 180 kV. Samples were prepared by gently grinding the 
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powders in methanol, subsequent deposition on 300-mesh carbon supported copper grids, then 

dried under ambient conditions. Image analysis was carried out using ImageJ 1.41 software.  

PXRD measurements: Powder X-ray diffraction (PXRD) patterns were collected with a Bruker 

D8 Advance Diffractometer with a LynxEye high-speed strip detector using Cu Kα1 (λ=0.1542 

nm) radiation.  

Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) measurements: Total 

Rh contents were obtained by means of ICP-OES using a Thermo Scientific iCAP 7400 duo 

instrument. Samples were digested in 5 mL HNO3 (Fisher, 70%) and 100 mg NH4F (Sigma 

Aldrich, ≥ 98.0%) at 190 oC via microwave irradiation (CEM–MARS microwave reactor). This 

was followed by addition of HCl (1 mL, Fisher, 37%) and the reactively formed HF, neutralized 

by addition of a boric acid solution (1 mL, Fisher, 3%). Subsequent analysis was carried out after 

sample dilution in 10 % aqueous HNO3.  

Isothermal hydrogen chemisorption (H2-Chem.) provided corroborating information about the 

number of Rh surface sites (i.e. Rh dispersion) and the associated crystallite sizes. Measurements 

were carried out on a Quantachrome ChemBet Pulsar TPR/TPD chemisorption analyzer 

equipped with an Omnistar/Pfeiffer Vacuum mass spectrometer. For this purpose, ~150 mg of 

catalyst was loaded into a quartz U-tube connected to the analyser and pre-treated as follows 

before H2-Chemisorption measurements. The sample was reduced with a flux of 5% H2 in He 

(15 NmL min-1) at 550 oC for 1 h, followed by N2 flux (15 NmL min-1) at the same temperature 

for 0.5 h, then cooled to room temperature under N2 flow. To avoid hydrogen spillover in the 

case of CeO2-containing supports, samples were cooled to 0 oC in an ice/water bath. Pulses of 

pure hydrogen (280 μL) were injected until saturation, thus providing the total H2 uptake of 
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chemisorbed hydrogen. These values were used to estimate the number of active surface sites, 

and hence Rh dispersion, mean Rh crystallite size and Turnover Frequencies (TOFs).  

Hydrogen Temperature Programmed Reduction measurements: H2-TPR measurements were 

carried out in the temperature interval 30-850 oC using the same instrumentation as employed for 

H2-chemisorption experiments. To this end, ~150 mg of catalyst was loaded into a quartz U-tube 

connected to the TPR apparatus and pre-treated in situ with 20% O2/He at 750 oC for 0.5 h (pre-

oxidized), cooled to room temperature under the same atmosphere, then purged under He flow 

for 0.5 h. After this pre-treatment, a flow of 15 NmL min-1 of 1% v/v H2 in He was continuously 

passed through the sample and a linear temperature ramp from ~30 oC up to 850 °C was applied 

at 10 °C min-1 and the H2 content of the effluent gas (TPR spectra) was analyzed by MS.   

Temperature Programmed Oxidation (TPO) experiments on used samples: The amount and 

reactivity toward oxygen of carbonaceous species deposited on the used Rh catalysts were 

assessed by TPO. In a typical experiment, 100 mg of catalyst that had previously been exposed 

to reaction conditions for 3 h was placed in a quartz reactor, retained by means of quartz wool. A 

linear temperature ramp of 10 °C min-1 from room temperature to 750 oC was applied under a 

constant flow (30 cm3 min-1) of 6.1% O2 in He. Temperature was measured in the middle of the 

catalyst bed by means of a K-type thermocouple. Analysis of the exit gas was accomplished by 

on-line mass spectrometry (FL-9496 Balzers) continuously monitoring the signals at m/z = 32 

(O2), 28 (CO) and 44 (CO2). Calibration of the mass spectrometer was performed by means of 

gas mixtures of known composition. 

XPS measurements on fresh and used samples: X-ray photoelectron spectra were acquired using 

customized equipment incorporating a high temperature-high pressure cell (SPECS HPC-20) 
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with infra-red sample heating. The cell design allowed sample heating up to 800 °C, under flow 

or static conditions, at pressures up to 20 bar. This arrangement enabled fast post-reaction sample 

transfer from the reaction chamber to the spectrometer chamber, whilst maintaining UHV 

conditions − i.e. without exposure to laboratory air.  Spectra were obtained with a hemispherical 

analyzer (SPECS Phoibos 100) operated at fixed transmission and 50 eV pass energy with 

energy step 0.1 eV using a non-monochromatized X-ray source (Al Kα; 1486.6 eV). Binding 

energies were calibrated using Al 2p (74.0 eV) as an internal reference. This method of 

calibration was necessary because surface charging occurred under photoemission conditions. 

The effect was constant during data acquisition and never greater than 5 eV, thus causing no 

distortion of peak shapes.  Prior to analysis, samples were evacuated to a base vacuum of 10-7 

mbar at room temperature. In a typical experiment, the fresh, calcined catalyst sample was 

placed in the spectrometer chamber and the XP spectra were obtained. The sample was then 

transferred under vacuum to the high pressure cell were it was heated to 700 oC and exposed to a 

50%:50% CH4:CO2 mixture for 3 h at a total pressure of 1 bar. After cooling to room 

temperature in reaction gas the samples were transferred back to the spectrometer chamber for 

analysis, without exposure to laboratory air. 

 

Catalytic evaluation: Catalytic data were obtained using a 3 mm internal diameter tubular quartz, 

fixed bed, single-pass flow reactor, fed with an equimolar mixture of CO2 and CH4 ([CH4]=50%, 

[CO2]=50%) at 1 bar and loaded with 50 mg catalyst (grain size 180-250 μm) held between two 

quartz wool plugs; the catalyst temperature measured by a centered K-type thermocouple. Both 

integral (high conversions) and differential (low conversions) operation of the reactor were used 

to provide a more complete analysis of the catalytic behavior. The total biogas feed flow rate was 
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typically 100 NmL min-1 during acquisition of light-off data (integral operation), corresponding 

to a weight-basis gas hourly space velocity (WGHSV=Ft/wcat) value of 120,000 NmL g-1 h-1. 

Turnover frequency (TOF) data were acquired at low CH4 and CO2 conversion (ca. 5-15 %; 

differential operation) by adjusting the total feed flow rate between 100-300 NmL min-1. The 

durability of the catalysts under thermal sintering in an oxidative environment was examined by 

in situ sintering at 750 oC for 2 h under 20 % O2/He flow. The experimental set up is shown 

schematically in Figure S1 (supplementary material).  

The following equations were used to calculate CH4 and CO2 conversions (XCH4 and XCO2), H2 

and CO yields (YH2 and YCO) and H2/CO molar ratio: 

Xi(%)=100(Ft,in[i]in-Ft,out[i]out)/Ft,in[i]in  i=CH4 or CO2 (8) 

YH2 (%)=100Ft,out[H2]out/2Ft,in[CH4]in  (9) 

YCO(%)=100Ft,out[CO]out/(Ft,in[CH4]in+Ft,in[CO2]in)  (10) 

H2/CO= [H2]out/[CO]out  (11) 

where Ft,in and Ft,out is the total flow rate at the reactor inlet and outlet, respectively, and the 

symbols in brackets are the concentrations of the corresponding reactants and products. 

 

3. Results and discussion 

3.1 Materials Characterization 

3.1.1 Textural and reducibility characteristics 
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The textural characteristics of the supports and of the corresponding Rh catalysts are summarized 

in Table 1. It is apparent that differences between the un-metallized and the Rh-containing 

samples are marginal. Table 1 includes Rh particle sizes of the fresh catalysts as determined by 

H2-chemisorption and HRTEM. The good agreement between the results obtained by these 

independent methods is apparent and the HRTEM results are analyzed further below.  

Figure 1 shows hydrogen uptakes as a function of temperature (H2-TPR) obtained with calcined 

γ-Al2O3, ACZ and CZ supports and also for the corresponding Rh-loaded catalysts. As expected, 

no uptake was observed with γ-Al2O3 in accordance to its non-reducible character, whereas two 

broad, overlapped peaks with maxima at ca. 450-500 oC and 650-700 oC were observed for ACZ 

and CZ. The two-peak feature is characteristic of CeO2-containing samples. In accord with the 

literature, the low temperature peak is attributed to Ce4+→Ce3+ superficial reduction taking place 

at CZ surfaces, whilst the high temperature feature is attributed to the corresponding reduction of 

bulk CeO2 [62]. The relative intensities and profiles of the peaks are characteristic of CeO2-

containing materials with comparatively low surface area [62], as here—see Table 1. The 

Oxygen Storage Capacities (OSC) of the supports assessed by H2-TPR (Fig. 1) were 0, 101 and 

557 μmol O2 g-1 for γ-Al2O3, ACZ and CZ respectively. Dispersion of ~1 wt% Rh on the supports 

resulted in a significant enhancement of the reducibility of ACZ and CZ as evidenced by the 

substantial shift of the TPR peaks to lower temperature (ca. 150-450 oC), indicating dramatic 

promotion of hydrogen spillover, which in the absence of metal is limited by H2 dissociation. 

The additional peak at ~ 90 oC is attributed to reduction of Rh2O3 to metallic Rh0. Interaction 

between cerium and rhodium oxides has been reported to improve the reducibility of both 

components due to H2 spillover from rhodium particles inducing concurrent reduction of both 

CeO2 and Rh2O3 [62,63]. With the non-reducible support (γ-Al2O3) the Rh2O3 reduction peak 
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appeared at a significantly higher temperature (~150 oC rather than 90 oC, Fig. 1), indicating a 

reduced extent of hydrogen spillover phenomena in this case.  Moreover, as we shall see, in the 

cases of ACZ and CZ the occurrence of O2- spillover between the support and rhodium particles 

was confirmed by XPS. 

3.1.2 Structural and morphological characteristics 

Representative PXRD patterns obtained for fresh Rh/γ-Al2O3, Rh/ACZ and Rh/CZ catalysts are 

shown in Fig. 2.  Reflections characteristic of γ-Al2O3 at 2θ = 32.6°, 37.2°, 39.5°, 46.0°, 60.9° 

and 66.9° can be seen in the diffractogram for fresh Rh/γ-Al2O3 (Fig. 2, pattern (a)), whilst Fig. 2 

pattern (c) shows the characteristic reflections of a CZ solid solution. The ACZ diffractogram 

illustrated in Fig. 2 pattern (b) contains reflections corresponding to γ-Al2O3 and CZ present as 

distinct phases, consistent with a mutual partial coating of the two substances at the nanometer 

scale. Earlier studies that made use of ACZ composites synthesized by methods similar to that 

used here [61,64,65] showed that the presence of Al2O3 nanoparticles restricted particle growth 

of CZ in ACZ and prevented sintering of the dispersed noble metal at elevated temperatures [64]. 

Diffraction peaks corresponding to Rh-containing phases were undetectable due to the low metal 

loading and small size of the Rh nanoparticles, as indeed demonstrated by H2 chemisorption 

(Table 1) and HRTEM (see below). 

Figure 3 shows representative HRTEM images and the corresponding particle size distributions 

of the three fresh catalysts. All samples exhibited small, randomly distributed spherical particles 

with average sizes of 1.3±0.4, 1.5±0.5 and 5.1±1.7 nm for Rh/γ-Al2O3, Rh/ACZ and Rh/CZ 

respectively (Table 1). Formation of smaller Rh particles on the γ-Al2O3-containing supports can 

be mainly attributed to the larger surface areas of these materials. 
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3.2 Evaluation of catalytic performance and stability  

In order to evaluate catalytic performance and time-on-stream stability, measurements were 

performed under both integral (high conversion) and differential (low conversion) reaction 

conditions at a total pressure of 1 bar. 

3.2.1 DRM performance under integral conditions 

The time-on-stream stability of the three catalysts over a period of 12 h was examined at 750 oC, 

CH4/CO2=1 (corresponding to typical biogas composition) and a weight-basis gas hourly space 

velocity (WGHSV=Ft/wcat) equal to 120,000 NmL g-1 h-1. Although 12 hours may appear to be a 

relatively short time for stability tests, the literature shows that most of the deterioration of DRM 

catalysts occurs during the first 1-15 hours (i.e., carbon deposition, particle agglomeration) [20, 

66]. Moreover, our catalysts were operated for at least 4 days before acquisition of the kinetic 

data (light-off curves, TOFs, oxidative sintering), during which time periodic activity tests at 750 

oC showed very stable performance.   

Stability results obtained are illustrated in Fig. 4, which shows the variation with time of CH4 

and CO2 conversions (XCH4 and XCO2), H2 and CO yields (YH2 and YCO) and H2/CO molar ratio.           

It is evident that all three catalysts exhibited good stability and performance with respect to all 

the above reaction parameters; methane conversion was stable over 12 h at ~90% for Rh/γ-Al2O3  

(Fig. 4a) and ~65-70% for Rh/ACZ (Fig. 4b) and Rh/CZ (Fig. 4c). The lower methane 

conversion obtained with the latter two catalysts is compatible with their lower Rh content 

(0.8wt% vs 1.0wt% for Rh/γ-Al2O3) and also their lower Rh-dispersion values (Table 1). A more 

detailed and rigorous comparison of catalytic performance in terms of intrinsic activity (i.e. 
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turnover frequencies) is given below. Compared to conventional Ni-based catalysts, [20- 26] the 

good stability of our Rh catalysts can be principally attributed to their much lower propensity for 

carbon deposition. This view is strongly supported by findings to be discussed below and is in 

accordance with earlier studies [3, 9-11, 39-47, 67]. It is to be expected that under the strongly 

reducing environment of DRM, much of the rhodium would be present as Rh0, as indeed directly 

demonstrated by the post-reaction XPS results described below.  

In order to examine possible effects of the Rh oxidation state on catalytic performance and the 

necessity or otherwise of H2 pre-reducing Rh-based catalysts before exposure to reforming 

reactions (a commonly applied procedure for Ni-based reforming catalysts), consecutive tests 

were carried out in which the used catalysts were immediately subjected to in situ oxidation 

(20% O2/He flow, 2 h, 750 oC) followed by switching back to reaction gas. Rapid and complete 

restoration of conversion and yield to levels equal to those of the corresponding pre-reduced 

fresh catalysts was observed (Fig. 4). This indicates that the active sites, presumably Rh0, are 

readily regenerated after exposure to reaction conditions. In addition, all catalysts retained their 

stability after exposure to high temperature oxidative sintering. The lack of necessity for H2 

preconditioning and the good stability under reducing-oxidizing cycles are of significant 

importance with respect to the use of Rh in cost-efficient catalytic systems for DRM 

implementation. 

Conversion, yield and H2/CO molar ratio performances as a function of temperature in the range 

400-750 oC are summarized in Fig. 5. Although these are broadly similar for the three cases, 

there are significant differences. Specifically, the H2/CO molar ratios, < 1.0 in all cases, decrease 

in the order Rh/γ-Al2O3 > Rh/ACZ > Rh/CZ. This reflects the increasing discrepancy between 

CO2 and CH4 conversions, the former varying in the opposite order to the H2/CO molar ratios. 
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The systematic increase of the relative CO2 conversion on going from low OSC supports to 

higher OSC supports (OSCAl2O3<OSCACZ<OSCCZ), with a concomitant increase in CO formation 

relative to H2, indicates that support-induced modifications of the Rh surface chemistry are 

responsible. This issue is discussed below in connection with the intrinsic TOF data. 

3.2.2 Intrinsic activity 

Intrinsic activity results for the catalysts are shown as Arrhenius plots in Figures S2, S3 and S4 

(supplementary material). Data were acquired under conditions of low methane and carbon 

dioxide conversions (~5-15%) in order to reflect intrinsic activity, unaffected by mass and/or 

thermal transport constraints. 

Given the large variation in oxygen ion lability between the three supports [56] possible effects 

of metal-support interactions are of interest. Figure 6 shows the temperature dependence of 

turnover frequencies of CH4 (Fig. 6a) and CO2 (Fig. 6b) given as moles consumed per mol of 

active site per second (active sites correspond to surface rhodium atoms calculated by the use of 

H2-uptake values obtained from the chemisorption experiments, Table 1). It is apparent that 

rhodium supported on CZ and ACZ exhibited a better intrinsic activity than Rh/γ-Al2O3, with 

Rh/CZ being the best overall. This may be ascribed to the reduced apparent activation energies 

(Ea) for CO2 and CH4 consumption exhibited by the two catalysts with ceria-containing supports, 

the effect being more pronounced for CO2 consumption (Fig. 6b: Ea= 98, 76 and 82 kJ mol-1 for 

Rh/γ-Al2O3, Rh/ACZ and Rh/CZ, respectively) compared to CH4 consumption (Fig. 6a: Ea= 95, 

79 and 93 kJ mol-1 for Rh/γ-Al2O3, Rh/ACZ and Rh/CZ, respectively): this is consistent with a 

bi-functional reaction mechanism that operated when the support contained labile oxygen. 

Specifically, surface oxygen vacancies could initiate CO2 activation by adsorption and scission 
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to CO + O. The resulting regenerated labile oxygen ions could then promote oxidation of carbon 

on the support and enhance oxygen ion spillover onto Rh, altering its electronic properties and 

surface chemistry by metal-support interactions [56] before ultimate reaction as sacrificial 

promoter [57] with CH4-derived adsorbed carbonaceous species on Rh sites. This interpretation 

is consistent with the observation of CO-enriched syngas produced by CZ-containing samples 

(Fig. 6c) and, as described below, with the reduced carbon deposition (TPO and XPS) exhibited 

by these catalysts. Promotion of the reverse water gas shift reaction due the enhanced basicity of 

ceria-containing supports [3] would also act to increase the CO content of the reformate, as 

proposed for Ni-based DRM catalysts [20]. From a practical point of view, it is noteworthy that 

the present results suggest that CeO2-containing supports could be of value for low temperature 

DRM, which is a challenging and attractive application [4,5,68-70].  

3.3 Characterization of used samples after DRM reaction 

3.3.1 Carbon deposition - TPO measurements 

The extent of carbon deposition was strongly dependent on the nature of the support, as shown 

by results of temperature programmed oxidation experiments illustrated in Figure 7.  Here, the 

amount of CO2 formed during a linear temperature ramp (10 oC/min) under a stream of 6.1% O2 

in He was monitored after exposure of the fresh catalysts to DRM conditions ([CH4]=50%, 

[CO2]=50%, T=750 oC, Ft=100 NmL min-1) for 3 h.  CO production was negligible in all cases 

and Table 2 summarizes the results, expressed as μmol C / g catalyst. The extent of carbon 

deposition was relatively small in all three cases, in accordance with earlier work, confirming the 

excellent resistance of Rh catalysts to coking under DRM [3, 39, 44]. 
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The total amount of carbon deposited followed the order Rh/γ-Al2O3 > Rh/ACZ > Rh/CZ (Fig. 7 

and Table 2), in good accord with the XPS results presented below. Thus increased OSC of the 

support decreased its propensity to accumulate carbon, in agreement with Djinovic et al. [45]. 

This effect has been ascribed to the presence of oxygen vacancies (Ce4+/Ce3+ redox couple) 

which activate methane on the Rh surface by metal-support interactions, resulting in a 

bifunctional reaction mechanism, as noted above. 

Table 2: Total amount of carbon deposited and mean deposition rate after 3 h of DRM 

operation. 

Catalyst 
Total amount of carbon deposited 

(μmol C / gcat) 

Mean deposition rate 

(μmol C / h gcat) 

Rh/γ-Al2O3 221 73.7 

Rh/ACZ 168 56.0 

Rh/CZ 78 26.0 

 

Apart from its influence on the amount of coke deposition, the identity of the support also 

affected the nature of the carbon species formed. High oxygen mobility is thought to enhance 

carbon gasification, thus inhibiting carbide formation and subsequent nucleation and growth of 

carbon filaments [71]. 

The TPO profile of Rh/CZ shows a principal peak at ~ 295 oC and two smaller peaks at 110 and 

520 oC (Fig. 7). The 110 oC peak can be attributed to reactive superficial carbide species [72-75] 

while the 295 oC and 520 oC peaks can be ascribed to two different types of amorphous 

carbonaceous deposits [75]. The intensity of the low-temperature TPO peak was much higher for 

the Al2O3-containing catalysts (Rh/γ-Al2O3 and Rh/ACZ) compared to Rh/CZ. This points to a 
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reduced activity of these two catalysts for the oxidation of carbidic carbon, previously proposed 

as a reactive intermediate responsible for the high DRM activity of Rh and Ru [75]. These TPO 

results are in general agreement with XPS measurements presented below, which clearly show 

that ceria incorporation suppresses carbide formation − down to zero in the case of the CZ 

support.  The catalysts with ceria-containing supports exhibit smaller high temperature peaks 

(Fig. 7) compared to Rh/γ-Al2O3, in agreement with results of previous studies [51] where they 

were assigned to pyrolytic carbon resulting from thermal cracking of methane: high oxygen 

mobility acts to reduce its amount.   

3.3.2 XPS results obtained after running under DRM conditions followed by in situ sample 

transfer without exposure to laboratory air 

Figure 8 shows representative XP spectra of the Rh 3d (Fig. 8a) and C 1s (Fig. 8b) region of all 

three catalysts before and after treatment under DRM conditions in the high pressure cell. These 

spectra provide qualitative and quantitative analysis of the catalyst surfaces, a summary of which 

is shown in Tables 3 and 4.  

Table 3: Oxidation states of rhodium prior to and after in situ DRM obtained from 

deconvolution of Rh 3d spectra. B.E. of the components used in each fitting is indicated in 

brackets.  

Sample % Rh Carbide (B.E. / eV) % Rh0 (B.E. /eV) %Rh1+ (B.E. /eV) % Rh3+ (B.E. /eV) 

Rh/γ-Al2O3, fresha - - - 100% (310.1) 

Rh/γ-Al2O3, after DRMb 21% (304.1) 55% (307.1) - 24% (310.5) 

Rh/ACZ, fresha - - - 100% (309.6) 

Rh/ACZ, after DRMb 10% (304.1) 72% (307.1) - 18% (310.5) 
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Rh/CZ, fresha - - 55%(308.5) 45% (309.7) 

Rh/CZ, after DRMb 0% (304.1) 100% (307.2) - 0% (310.5) 

a Fresh samples that had been oxidized in air at 750 oC for 2 h before acquisition of XP spectra  

b Spent samples, i.e. samples operated under DRM conditions (CH4:CO2=1:1) at 700 oC for 3 h and moved directly 

into the XPS chamber without exposure to laboratory air.  

 

The results presented in Fig. 8 and Table 3 show striking differences between the fresh calcined 

catalysts in regard to the oxidation states of Rh:  Rh/ACZ and Rh/γ-Al2O3 contained only Rh3+ 

whereas Rh/CZ contained both Rh3+ and Rh1+. This is a clear evidence of strong metal-support 

interaction between Rh particles and supports with high oxygen ion lability such as CZ; the 

absence of Rh1+ in the fresh calcined Rh/ACZ is most probably due to the relatively low CZ-

content (~20wt%) in the ACZ, thus limiting interaction between Rh particles and CZ regions. As 

previously shown by other methods, supports with high oxygen ion lability can substantially 

destabilize Rh oxide which can then be readily reduced to the metallic state, in contrast to the 

situation on γ-Al2O3 (~ zero oxygen ion lability), where rhodium oxide is stable [76]. O2- 

spillover characteristic of active supports such as those containing ceria results in an electric 

double layer [Oδ-, δ+] on the surface of Rh particles, previously invoked to explain strong metal-

support interactions by analogy with the electric double layer created electrochemically [77], 

during so-called Electrochemical Promotion or NEMCA effect (Non-Faradaic Electrochemical 

Modification of Catalytic Activity) [58, 78]. 

After exposure to DRM conditions, the three catalysts again displayed substantial differences 

with respect to Rh oxidation states and also in regard to the amounts of Rh carbide present (Fig. 

8a). Rh/CZ contained 100 % Rh0 and no detectable carbide. (The feature at 303.2 eV labeled in 

Fig. 8a with a * is the Ce (M3VV) Auger line [78]). Rh/ACZ contained 72 % Rh0, the remainder 
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being largely Rh3+ along with a small amount of Rh carbide. Rh/γ-Al2O3 contained the least Rh0 

of all (ca. 55 %), significant Rh3+, and twice as much Rh carbide as Rh/ACZ. Clearly, 

incorporation of CZ in the support acts to (i) maintain Rh in the metallic state and (ii) minimize 

Rh carbide accumulation under DRM reaction conditions. It also acts to minimize the amount of 

deposited carbon in all forms, as shown in Fig. 8b and Table 4 which gives the absolute total 

atomic concentration of carbon in the three catalysts—note that these results are in good accord 

with the TPO data presented above: this increases confidence in the direct relevance of the XPS 

data to the results that were acquired by conventional reactor methods.   

 

Table 4. Atomic surface composition of Rh and C prior and after in situ DRM by indicated 

catalysts, obtained from XPS spectra plotted in Fig. 8. 

Catalyst 

XPS atomic concentration 

Rh C 1s 

Rh/γ-Al2O3, fresh-calcined 0.5 0.6 

Rh/γ-Al2O3, after DRM 0.5 18.1 

Rh/ACZ, fresh-calcined 0.7 0.1 

Rh/ACZ, after DRM 0.7 7.4 

Rh/CZ, fresh-calcined 0.5 0.2 

Rh/CZ, after DRM 0.4 5.1 

 

3.3.3 HRTEM after DRM 

HRTEM images and the corresponding rhodium particle size distributions of the post DRM 

catalysts are shown in Fig. 9. These clearly show that there were no significant changes as 
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compared to the fresh samples (Fig. 3). The average rhodium particle sizes on the Rh/γ-Al2O3, 

Rh/ACZ and Rh/CZ catalysts were 1.7±0.4, 2.9±1.2 and 5.4±1.7 nm respectively. Comparing 

these values with those of the fresh catalysts (Table 1) reveals a slight broadening of the particle 

size distributions, most evident in the case of Rh/ACZ. However, the data clearly demonstrate 

that the Rh particles were very stable under reaction conditions.  

 

3.4 Mechanistic implications 

It is clear that the most active sites were metallic Rh0: correlation of post reaction XPS with the 

kinetic data shows that TOF increased with the amount of Rh0 present in the catalyst (Fig. 6 and 

Fig. 8a, Table 3). Surface oxygen vacancies in the CZ-containing supports enhanced the 

activation of CO2 by dissociative adsorption, thus increasing DRM activity by means of a bi-

functional mechanism. This is in line with the higher CO selectivity and the lower apparent 

activation energies observed, in particular for CO2 consumption (Figs. 4-6). The extent and 

nature of deposited carbon revealed by TPO and XPS were in accord with the activity 

characteristics of the catalysts and an overall mechanism that is consistent with the results may 

be derived from them. It is in line with the superior turnover activity of Rh on the CZ-containing 

supports and implies the operation of a bi-functional reaction pathway. 

It is well known that CH4 and CO2 activation during DRM follow different routes [20, 27, 47]: 

CH4 is mainly activated on metal sites (M*) that lead to H2(g) evolution and carbonaceous 

species, CHx (reaction 12), and eventually carbide that can transform to filamentous, amorphous, 

graphite, or whiskers of carbon [20, 27], through the following consecutive steps (12) [27]: 
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CH4(g) 
+𝑀∗
→   CH4-M* 

+𝑀∗
→   CH3-M* + H-M*  

+𝑀∗
→   CH2-M* + 2H-M*  

+𝑀∗
→    

CH-M* + 3H-M* 
+𝑀∗
→   C-M* + 4H-M* 

−4𝑀∗
→    C-M* + 2H2(g)                           (12) 

CO2 is activated by dissociative adsorption to CO+O on both metal and support sites, the latter 

especially favorable in the case of CeO2-containing supports incorporating a significant 

concentration of oxygen vacancies,VO
..  , via the following steps (13) [27]:  

CO2 (g) + VO
..  →  O𝑖

||
  + CO (g)        (13) 

thus supplying oxygen atoms to the support forming interstitial (labile) O2- ions, O𝑖
||
 ; these 

eventually occupy oxygen vacancies (VO
..  and O𝑖

||
 : Krӧger-Vink notation for point defects and 

interstitial oxygen ions, respectively [56, 78]).  

Reaction (13) is also responsible for the CO-enriched reformate (Figs. 2-6) produced by Rh/ACZ 

and Rh/CZ compared to Rh/γ-Al2O3.  

The concentration of the oxygen ion vacancies is determined by the equilibrium [56, 78]: 

OO ↔ VO
.. + Oi

||
                                                                                                  (14) 

between lattice oxygen, OO, and interstitial oxygen ions, O𝑖
||
  (i.e. O2- which corresponds to the 

redox cycle Ce3+/Ce4+ characteristic of CeO2-containing supports [36-38]).  

Oxygen ions back-spillover can then occur onto the surfaces of Rh particles through the 

following step (15) [80]: 

O𝑖
||
  + Rh* → [Oδ-, δ+]Rh* + VO

..         (15) 
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where Rh* denotes a rhodium active site, not exclusively Rh0 but also RhOx [81]. 

According to the double-layer account of promotion and metal-support interactions [56-

60,78,80], oxygen back-spillover provides an effective double layer [Oδ-, δ+] (with δ≈ 2 [80]) on 

the Rh particles (Fig. 10), altering their work function and chemisorptive properties and hence 

their intrinsic activity towards catalytic reactions [56-60,78,80].  

In the present case the Oδ- layer increases the Rh work function, weakening the chemisorptive 

bond of electron acceptor (electrophilic) adsorbates and strengthening that of electron donors 

(electrophobes).  

Accordingly, the Rh-O bond is weakened (atomic O is an electron acceptor), destabilizing the 

RhOx state and promoting its transformation to Rh0 (Fig. 8a, Table 3) while the chemisorption 

bonds of CH4, and carbonaceous species derived from it, are strengthened because of their 

electrophilic character [78], thus promoting CH4 activation via reaction (12). The [Oδ-, δ+]Rh* 

double layer displaces O(a) to a more weakly bound and therefore more reactive state, enhancing 

the intrinsic activity of Rh particles supported on high oxygen lability supports, as indeed 

observed. The decreased apparent activation energies found for Rh/ACZ and Rh/CZ catalysts are 

in agreement with this view.  

According to the sacrificial promoter concept [57, 80], Oδ- species on the Rh surface, are 

themselves reactive and are rapidly consumed by the oxidizable reactants present (CH4 and 

species derived from it). They are nevertheless effective because they are continuously 

replenished by labile O2- species provided by the support. At very high temperatures, where the 

lifetime of Oδ- species is significantly shortened [40], their promotional effect is correspondingly 

diminished. The Arrhenius diagrams in Fig. 6 are consistent with this: at high temperatures 
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(>750oC) the intrinsic activity of Rh/γ-Al2O3 approached that of Rh/ACZ and Rh/CZ. This 

promotional effect is therefore favored at low temperatures, once again indicating that CZ is a 

promising support for low temperature DRM.        

 

4. Conclusions 

Results of a detailed investigation of the effect of different oxide supports, with or without high 

oxygen ion lability, on important catalytic parameters (activity, selectivity, stability, resistance to 

carbon deposition, oxidative aging) relevant to DRM enabled construction of an overall reaction 

mechanism. 

State of the art XPS measurements, never used previously in DRM studies, were especially 

revealing. These results show unambiguously and for the first time what the oxidation states of 

Rh actually are and how they can vary during DRM. Also, how the degree of oxygen lability of 

the supports affects this key trait.   

The principal active metal site is unambiguously identified as Rh0: Rh2O3 is destabilized by 

supports with high oxygen lability due to O2- backspillover that weakens the Rh-O bond. This 

effect also accounts for reduced carbon deposition on ACZ and especially, CZ-supported Rh.  

Interestingly, on CZ, Rh0 persists even under oxidizing atmospheres. 

A new bi-functional mechanism for DRM promotion based on the “effective double layer 

model” of metal-support interactions, fits well with the observations. Methane activation occurs 

on Rh0 sites. In the case of CZ-containing supports, dissociative adsorption of CO2 is promoted 

at oxygen vacancies in the support.  
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Kinetic data indicate that Rh shows promise as a low temperature DRM catalyst, a challenging 

and attractive potential application. 

In regard to methodology, it is shown that energy-consuming hydrogen preconditioning is not 

necessary for the activation of Rh-based DRM catalysts, unlike Ni-based catalysts. 
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Figure Captions 

 

Figure 1. H2-TPR profiles of the γ-Al2O3, ACZ and CZ supports and the corresponding 

supported Rh catalysts. 

Figure 2. XRD patterns of (a) fresh Rh/γ-Al2O3, (b) Rh/ACZ and (c) Rh/CZ catalysts.  

Figure 3. HRTEM images of fresh Rh/γ-Al2O3 (a), Rh/ACZ (b) and Rh/CZ (c) catalysts and the 

corresponding particle size distribution histograms.  

Figure 4: (CH4, CO2)-conversion, (H2, CO)-yield and H2/CO molar ratio yields for fresh Rh/γ-

Al2O3 (a), Rh/ACZ (b) and Rh/CZ (c) catalysts as a function of time on stream at T = 750 oC and 

equimolar feed. Experimental conditions: Ft,in = 100 NmL min-1; catalyst mass wcat = 50 mg. 

Note rapid and complete restoration of DRM activity following a 2 h in situ oxidation with 20 % 

O2/He flow (100 NmL min-1) at 750 oC. 

Figure 5: (CH4, CO2)-conversion, (H2, CO)-yield and H2/CO molar ratio for fresh Rh/γ-Al2O3 

(a), Rh/ACZ (b) and Rh/CZ (c) as a function of temperature. Experimental conditions: equimolar 

feed ([CH4] = 50 %, [CO2] = 50 %); Ft,in = 100 NmL min-1; catalyst mass wcat = 50 mg. 

Figure 6: Temperature dependence of TOFs of CH4 (a) and CO2 (b) consumption, and H2/CO 

molar ratio (c) obtained for fresh Rh/Al2O3, Rh/ACZ and Rh/CZ catalysts. Experimental 

conditions: equimolar composition ([CH4] = 50 %, [CO2] = 50 %); catalyst mass wcat = 50 mg. 

Figure 7. Temperature programmed oxidation after exposure of fresh catalysts to DRM for 3 h. 

Temperature ramp 10 oC min-1 from room temperature to 750 oC.  
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Figure 8. XPS spectra corresponding to (a) Rh 3d and (b) C1s regions obtained before and after 

in situ DRM over the indicated catalyst samples. The feature labeled with a * in the Rh 3d 

spectra corresponds to a Ce Auger transition. 

Figure 9: HRTEM images of the post DRM Rh/γ-Al2O3 (a), Rh/ACZ (b) and Rh/CZ (c) catalysts 

and the corresponding particle size distribution histograms.  

Figure 10: Model of the bifunctional support-mediated promotion of DRM by supports with 

high oxygen ion lability. 
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Fig 1 
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Fig 2 
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Fig 3 
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Fig 4 
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Fig 5 
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Fig 6 
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Fig 7 
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Fig 8 
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Fig 9 
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Fig 10 
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