41 research outputs found

    AEg̅IS latest results

    Get PDF
    The validity of the Weak Equivalence Principle (WEP) as predicted by General Relativity has been tested up to astounding precision using ordinary matter. The lack hitherto of a stable source of a probe being at the same time electrically neutral, cold and stable enough to be measured has prevented highaccuracy testing of the WEP on anti-matter. The AEg̅IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment located at CERN's AD (Antiproton Decelerator) facility aims at producing such a probe in the form of a pulsed beam of cold anti-hydrogen, and at measuring by means of a moiré deflectometer the gravitational force that Earth's mass exerts on it. Low temperature and abundance of the H̅ are paramount to attain a high precision measurement. A technique employing a charge-exchange reaction between antiprotons coming from the AD and excited positronium atoms is being developed at AEg̅IS and will be presented hereafter, alongside an overview of the experimental apparatus and the current status of the experimen

    Protocol for pulsed antihydrogen production in the AEḡIS apparatus

    Get PDF
    The AEḡIS collaboration’s main goal is to measure the acceleration of antihydrogen (H¯) due to gravity. The experimental scheme is to form a pulsed beam whose vertical deflection is then measured by means of a moiré deflectometer [1]. Creating pulsed H¯ is crucial since it allows a velocity measurement of the antiatoms via time of flight (ToF) necessary to deduce the gravitational acceleration ḡ from the vertical deflection Δs. The aim of this article is to outline the experimental protocol leading up to pulsed antihydrogen production in the AEḡIS experiment

    Complementary and alternative medicine: attitudes, knowledge and use among surgeons and anaesthesiologists in Hungary

    Get PDF
    BACKGROUND: Despite their worldwide popularity the question of using non-conventional treatments is a source of controversy among medical professionals. Although these methods may have potential benefits it presents a problem when patients use non-conventional treatments in the perioperative period without informing their attending physician about it and this may cause adverse events and complications. To prevent this, physicians need to have a profound knowledge about non-conventional treatments. METHODS: An anonymous questionnaire was distributed among surgeons and anaesthesiologists working in Hungarian university clinics and in selected city or county hospitals. Questionnaires were distributed by post, online or in person. Altogether 258 questionnaires were received from 22 clinical and hospital departments. RESULTS: Anaesthesiologists and surgeons use reflexology, Traditional Chinese Medicine, herbal medicine and manual therapy most frequently in their clinical practice. Traditional Chinese Medicine was considered to be the most scientifically sound method, while homeopathy was perceived as the least well-grounded method. Neural therapy was the least well-known method among our subjects. Among the subjects of our survey only 3.1 % of perioperative care physicians had some qualifications in non-conventional medicine, 12.4 % considered themselves to be well-informed in this topic and 48.4 % would like to study some complementary method. Women were significantly more interested in alternative treatments than men, p = 0.001427; OR: 2.2765. Anaesthesiologists would be significantly more willing to learn non-conventional methods than surgeons. 86.4 % of the participants thought that non-conventional treatments should be evaluated from the point of view of evidence. Both surgeons and anaesthesiologists accept the application of integrative medicine and they also approve of the idea of teaching these methods at universities. CONCLUSIONS: According to perioperative care physicians, non-conventional methods should be evaluated based on evidence. They also expressed a willingness to learn about those treatments that meet the criteria of evidence and apply these in their clinical practice

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions
    corecore