334 research outputs found

    Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging.

    Get PDF
    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al. in Magn. Reson. Med. 48(6):1358–1372, 2004) of the brain. The goal is to reveal the architecture of the neural fibers in brain white matter. To the variety of existing techniques, we wish to add novel approaches that exploit differential geometry and tensor calculus. In Diffusion Tensor Imaging (DTI), the diffusion of water is modeled by a symmetric positive definite second order tensor, leading naturally to a Riemannian geometric framework. A limitation is that it is based on the assumption that there exists a single dominant direction of fibers restricting the thermal motion of water molecules. Using HARDI data and higher order tensor models, we can extract multiple relevant directions, and Finsler geometry provides the natural geometric generalization appropriate for multi-fiber analysis. In this paper we provide an exact criterion to determine whether a spherical function satisfies the strong convexity criterion essential for a Finsler norm. We also show a novel fiber tracking method in Finsler setting. Our model incorporates a scale parameter, which can be beneficial in view of the noisy nature of the data. We demonstrate our methods on analytic as well as simulated and real HARDI data

    A study of the environments of large radio galaxies using SDSS

    Full text link
    The distributions of galaxies in the environments of 16 large radio sources have been examined using the Sloan Digital Sky Survey. In the giant radio galaxy J1552+2005 (3C326) which has the highest arm-length ratio, the shorter arm is found to interact with a group of galaxies which forms part of a filamentary structure. Although most large sources occur in regions of low galaxy density, the shorter arm is brighter in most cases suggesting asymmetries in the intergalactic medium which may not be apparent in the distribution of galaxies. In two cases with strong and variable cores, J0313+4120 and J1147+3501, the large flux density asymmetries are possibly also caused by the effects of relativistic motion.Comment: Accepted for publication in MNRA

    Recurrent radio outbursts at the center of the NGC1407 galaxy group

    Full text link
    We present deep Giant Metrewave Radio Telescope (GMRT) radio observations at 240, 330 and 610 MHz of the complex radio source at the center of the NGC1407 galaxy group. Previous GMRT observations at 240 MHz revealed faint, diffuse emission enclosing the central twin-jet radio galaxy. This has been interpreted as an indication of two possible radio outbursts occurring at different times. Both the inner double and diffuse component are detected in the new GMRT images at high levels of significance. Combining the GMRT observations with archival Very Large Array data at 1.4 and 4.9 GHz, we derive the total spectrum of both components. The inner double has a spectral index \alpha=0.7, typical for active, extended radio galaxies, whereas the spectrum of the large-scale emission is very steep, with \alpha=1.8 between 240 MHz and 1.4 GHz. The radiative age of the large-scale component is very long, ~300 Myr, compared to ~30 Myr estimated for the central double, confirming that the diffuse component was generated during a former cycle of activity of the central galaxy. The current activity have so far released an energy which is nearly one order of magnitude lower than that associated with the former outburst. The group X-ray emission in the Chandra and XMM-Newton images and extended radio emission show a similar swept-back morphology. We speculate that the two structures are both affected by the motion of the group core, perhaps due to the core sloshing in response to a recent encounter with the nearby elliptical galaxy NGC1400.Comment: 15 pages, 12 figures and 5 tables. Accepted for publication in Ap

    Understanding the nature of FRII optical nuclei: a new diagnostic plane for radio galaxies

    Get PDF
    We extend our study of the nuclei of 3CR FR II radio galaxies through HST optical images up to z=0.3. In the majority of them an unresolved nucleus (central compact core, CCC) is found. We analyze their position in the plane formed by the radio and optical nuclear luminosities in relation to their optical spectral properties. The broad-lined objects (BLO) have the brightest nuclei: they are present only at optical luminosities nu L_nu > 4 X 10^42 erg s^-1 which we suggest might represent a threshold in the radiative efficiency combined to a small range of black hole masses. About 40 % of the high and low excitation galaxies (HEG and LEG) show CCC which resemble those previously detected in FR I galaxies, in apparent contrast to the unification model. The equivalent width of the [OIII] emission line (with respect to the nuclear luminosity) reveals the nature of these nuclei, indicating that the nuclei of HEG are obscured to our line of sight and only scattered radiation is observed. This implies that the population of FR II is composed by objects with different nuclear properties, and only a fraction of them can be unified with quasars.Comment: 11 pages, 6 figures, in press on Astronomy & Astrophysics, minor changes have been mad

    Study of star-forming galaxies in SDSS up to redshift 0.4 II. Evolution from the fundamental parameters: mass, metallicity & SFR

    Full text link
    To understand the formation and evolution of galaxies, it is important to have a full comprehension of the role played by the metallicity, star formation rate (SFR), morphology, and color. The interplay of these parameters at different redshifts will substantially affect the evolution of galaxies and, as a consequence, the evolution of them will provide important clues and constraints on the galaxy evolution models. In this work we focus on the evolution of the SFR, metallicity of the gas, and morphology of galaxies at low redshift in search of signs of evolution. We use the S2N2 diagnostic diagram as a tool to classify star--forming, composite, and AGN galaxies. We analyzed the evolution of the three principal BPT diagrams, estimating the SFR and specific SFR (SSFR) for our samples of galaxies, studying the luminosity and mass-metallicity relations, and analyzing the morphology of our sample of galaxies through the g-r color, concentration index, and SSFR. We found that the S2N2 is a reliable diagram to classify star--forming, composite, and AGNs galaxies. We demonstrate that the three principal BPT diagrams show an evolution toward higher values of [OIII]5007/Hb due to a metallicity decrement. We found an evolution in the mass-metallicity relation of ~ 0.2 dex for the redshift range 0.3 < z < 0.4 compared to our local one. From the analysis of the evolution of the SFR and SSFR as a function of the stellar mass and metallicity, we discovered a group of galaxies with higher SFR and SSFR at all redshift samples, whose morphology is consistent with those of late-type galaxies. Finally, the comparison of our local (0.04<z<0.1) with our higher redshift sample (0.3<z<0.4), show that the metallicity, the SFR and morphology, evolve toward lower values of metallicity, higher SFRs, and late--type morphologies for the redshift range 0.3<z<0.4Comment: 16 pages, 15 figures. Accepted for publication in A&

    Dynamical Patterns of Cattle Trade Movements

    Get PDF
    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions

    Dynamical Patterns of Cattle Trade Movements

    Get PDF
    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions

    Global landscape review of serotype-specific invasive pneumococcal disease surveillance among countries using PCV10/13: The pneumococcal serotype replacement and distribution estimation (PSERENADE) project

    Get PDF
    Serotype-specific surveillance for invasive pneumococcal disease (IPD) is essential for assessing the impact of 10- and 13-valent pneumococcal conjugate vaccines (PCV10/13). The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project aimed to evaluate the global evidence to estimate the impact of PCV10/13 by age, product, schedule, and syndrome. Here we systematically characterize and summarize the global landscape of routine serotype-specific IPD surveillance in PCV10/13-using countries and describe the subset that are included in PSERENADE. Of 138 countries using PCV10/13 as of 2018, we identified 109 with IPD surveillance systems, 76 of which met PSERENADE data collection eligibility criteria. PSERENADE received data from most (n = 63, 82.9%), yielding 240,639 post-PCV10/13 introduction IPD cases. Pediatric and adult surveillance was represented from all geographic regions but was limited from lower income and high-burden countries. In PSERENADE, 18 sites evaluated PCV10, 42 PCV13, and 17 both; 17 sites used a 3 + 0 schedule, 38 used 2 + 1, 13 used 3 + 1, and 9 used mixed schedules. With such a sizeable and generally representative dataset, PSERENADE will be able to conduct robust analyses to estimate PCV impact and inform policy at national and global levels regarding adult immunization, schedule, and product choice, including for higher valency PCVs on the horizon
    corecore