215 research outputs found
Determination Of The Pressure Of The Semimetal-semiconductor Transition In The Presence Of A Resonant Acceptor Level
An expression relating the pressure dependences of the resistivity and the mobile electron concentration is derived and used along with Hall effect and resistivity data to determine the pressure at which the semimetal-semiconductor transition occurs in Hg1-xCdxTe for x=0.124, at low temperatures. The method is applicable in the presence of a resonant acceptor level.5495470547
The Diabetes and WELLbeing programme: protocol of a multi-site European complex intervention study
A quasi-experimental design evaluation study examines long-term impact of the 12-week DWELL programme, a self-management intervention for people with type 2 diabetes (T2D), based on adult learning and person-centred approaches, delivered in 5 community and hospital sites in 4 European countries. Overall target is 780 people with T2D. Staff are trained in motivational interviewing, group facilitation, diabetes education, and programme approach which consists of core and ‘pick and mix’ sessions on diabetes education, physical activity, healthy eating and wellbeing. Pre-post measures are taken at baseline (T0), end-of-programme (T1), at 6 months (T2) and 12 months (T3). There is a non-equivalent control group of 190 at T2/T3. Biomedical data are collected by staff and psychosocial data are collected via self-completed validated scales. Metabolic measures include: HbA1c, BMI and waist circumference. Demographics capture: age, gender, ethnicity, household composition, education, employment, income. Psychosocial data are collected on illness perception, patient empowerment, eating behaviours, physical activity, physical/mental health status, health-related quality of life (EQ-5D), use of diabetes-related health services and self-care activities.
Participant experiences are recorded via motivational interviews at T0 and T1 and focus groups at T1. Process evaluation data are collected via interviews with staff and patient ambassadors. The DWELL programme started in 2018 and results will be available in 2021.
The study will produce rich data on long-term impact of intervention to allow replication and further development. It will permit cross-border conclusions on sustainability and embeddedness of model in varied service settings, and empowerment-based public health approach to T2D self-management
Metabolomic Characterization of Ovarian Epithelial Carcinomas by HRMAS-NMR Spectroscopy
Objectives. The objectives of the present study are to determine if a metabolomic study by HRMAS-NMR can (i) discriminate between different histological types of epithelial ovarian carcinomas and healthy ovarian tissue, (ii) generate statistical models capable of classifying borderline tumors and (iii) establish a potential relationship with patient's survival or response to chemotherapy. Methods. 36 human epithelial ovarian tumor biopsies and 3 healthy ovarian tissues were studied using 1H HRMAS NMR spectroscopy and multivariate statistical analysis. Results. The results presented in this study demonstrate that the three histological types of epithelial ovarian carcinomas present an effective metabolic pattern difference. Furthermore, a metabolic signature specific of serous (N-acetyl-aspartate) and mucinous (N-acetyl-lysine) carcinomas was found. The statistical models generated in this study are able to predict borderline tumors characterized by an intermediate metabolic pattern similar to the normal ovarian tissue. Finally and importantly, the statistical model of serous carcinomas provided good predictions of both patient's survival rates and the patient's response to chemotherapy. Conclusions. Despite the small number of samples used in this study, the results indicate that metabolomic analysis of intact tissues by HRMAS-NMR is a promising technique which might be applicable to the therapeutic management of patients
GSK3-mediated raptor phosphorylation supports amino acid-dependent Q2 mTORC1-directed signalling
The mammalian or mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a ubiquitously expressed multimeric protein kinase complex that integrates nutrient and growth factor signals for the co-ordinated regulation of cellular metabolism and cell growth. Herein, we demonstrate that suppressing the cellular activity of glycogen synthase kinase-3 (GSK3), by use of pharmacological inhibitors or shRNA-mediated gene silencing, results in substantial reduction in amino acid (AA)-regulated mTORC1-directed signalling, as assessed by phosphorylation of multiple downstream mTORC1 targets. We show that GSK3 regulates mTORC1 activity through its ability to phosphorylate the mTOR-associated scaffold protein raptor (regulatory-associated protein of mTOR) on Ser(859). We further demonstrate that either GSK3 inhibition or expression of a S859A mutated raptor leads to reduced interaction between mTOR and raptor and under these circumstances, irrespective of AA availability, there is a consequential loss in phosphorylation of mTOR substrates, such as p70S6K1 (ribosomal S6 kinase 1) and uncoordinated-51-like kinase (ULK1), which results in increased autophagic flux and reduced cellular proliferation
Impairing the production of ribosomal RNA activates mammalian target of rapamycin complex 1 signalling and downstream translation factors
Ribosome biogenesis is a key process for maintaining protein synthetic capacity in dividing or growing cells, and requires coordinated production of ribosomal proteins and ribosomal RNA (rRNA), including the processing of the latter. Signalling through mammalian target of rapamycin complex 1 (mTORC1) activates all these processes. Here, we show that, in human cells, impaired rRNA processing, caused by expressing an interfering mutant of BOP1 or by knocking down components of the PeBoW complex elicits activation of mTORC1 signalling. This leads to enhanced phosphorylation of its substrates S6K1 and 4E-BP1, and stimulation of proteins involved in translation initiation and elongation. In particular, we observe both inactivation and downregulation of the eukaryotic elongation factor 2 kinase, which normally inhibits translation elongation. The latter effect involves decreased expression of the eEF2K mRNA. The mRNAs for ribosomal proteins, whose translation is positively regulated by mTORC1 signalling, also remain associated with ribosomes. Therefore, our data demonstrate that disrupting rRNA production activates mTORC1 signalling to enhance the efficiency of the translational machinery, likely to help compensate for impaired ribosome production
Mechanical response of 3D Insert® PCL to compression
3D polymeric scaffolds are increasingly used for in vitro experiments aiming to mimic the environment found in vivo, to support for cellular growth and to induce differentiation through the application of external mechanical cues. In research, experimental results must be shown to be reproducible to be claimed as valid and the first clause to ensure consistency is to provide identical initial experimental conditions between trials. As a matter of fact, 3D structures fabricated in batch are supposed to present a highly reproducible geometry and consequently, to give the same bulk response to mechanical forces. This study aims to measure the overall mechanical response to compression of commercially available 3D Insert PCL scaffolds (3D PCL) fabricated in series by fuse deposition and evaluate how small changes in the architecture of scaffolds affect the mechanical response. The apparent elastic modulus (Ea) was evaluated by performing quasi-static mechanical tests at various temperatures showing a decrease in material stiffness from 5 MPa at 25 °C to 2.2 MPa at 37 °C. Then, a variability analysis revealed variations in Ea related to the repositioning of the sample into the testing machine, but also consistent differences comparing different scaffolds. To clarify the source of the differences measured in the mechanical response, the same scaffolds previously undergoing compression, were scanned by micro computed tomography (μCT) to identify any architectural difference. Eventually, to clarify the contribution given by differences in the architecture to the standard deviation of Ea, their mechanical response was qualitatively compared to a compact reference material such as polydimethylsiloxane (PDMS). This study links the geometry, architecture and mechanical response to compression of 3D PCL scaffolds and shows the importance of controlling such parameters in the manufacturing process to obtain scaffolds that can be used in vitro or in vivo under reproducible conditions
Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides
In this work we have developed polymeric materials from epoxidized vegetable oils in order to obtain materials with excellent mechanical properties for use as green matrix composites. Epoxidized soybean oil (ESO), epoxidized linseed oil (ELO) and different mixtures of the two oils were used to produce the polymers. Phthalic anhydride (17 mol%) and maleic anhydride (83 mol%) which has a eutectic reaction temperature of 48 °C were used as crosslinking agents while benzyl dimethyl amine (BDMA) and ethylene glycol were used as the catalyst and initiator, respectively. The results showed that samples 100ELO and 80ELO20ESO could be used as a matrix in green composites because they demonstrated good mechanical properties. © 2012 AOCS (outside the USA).This work is part of the project IPT-310000-2010-037,''ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character'' funded by the "Ministerio de Ciencia e Innovacion", with financial aid of 189,540.20 EUR, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R + D + i for and on behalf of the companies.Samper Madrigal, MD.; Fombuena Borrás, V.; Boronat Vitoria, T.; García Sanoguera, D.; Balart Gimeno, RA. (2012). Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. Journal of the American Oil Chemists' Society. 89(8):1521-1528. https://doi.org/10.1007/s11746-012-2041-yS15211528898Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polym Rev C44:231–274Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—a comparative study to PP. Compos Sci Technol 70:1687–1696Raquez JM, Deleglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509Charlet K, Jernot JP, Gomina M, Bizet L, Breard J (2010) Mechanical properties of flax fibers and of the derived unidirectional composites. J Compos Mater 44:2887–2896Barreto ACH, Esmeraldo MA, Rosa DS, Fechine PBA, Mazzetto SE (2010) Cardanol biocomposites reinforced with jute fiber: microstructure, biodegradability, and mechanical properties. Polym Compos 31:1928–1937Thakur VK, Singha AS (2010) Physico-chemical and mechanical characterization of natural fibre reinforced polymer composites. Iran Polym J 19:3–16Schmitz WR, Wallace JG (1954) Epoxidation of methyl oleate with hydrogen peroxide. J Am Oil Chem Soc 31:363–365La Scala J, Wool RP (2002) Effect of FA composition on epoxidation kinetics of TAG. J Am Oil Chem Soc 79:373–378de Espinosa LM, Ronda JC, Galia M, Cadiz V (2008) A new enone-containing triglyceride derivative as precursor of thermosets from renewable resources. J Polym Sci Pol Chem 46:6843–6850Gerbase AE, Petzhold CL, Costa APO (2002) Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J Am Oil Chem Soc 79:797–802Boquillon N, Fringant C (2000) Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners. Polymer 41:8603–8613Montserrat S, Flaque C, Calafell M, Andreu G, Malek J (1995) Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system. Thermochim Acta 269:213–229Zacharuk M, Becker D, Coelho LAF, Pezzin SH (2011) Study of the reaction between polyethylene glycol and epoxy resins using N,N-dimethylbenzylamine as catalyst. Polimeros 21:73–77Lozada Z, Suppes GJ, Tu YC, Hsieh FH (2009) Soy-based polyols from oxirane ring opening by alcoholysis reaction. J Appl Polym Sci 113:2552–256
Amino Acid Availability Controls TRB3 Transcription in Liver through the GCN2/eIF2α/ATF4 Pathway
In mammals, plasma amino acid concentrations are markedly affected by dietary or pathological conditions. It has been well established that amino acids are involved in the control of gene expression. Up to now, all the information concerning the molecular mechanisms involved in the regulation of gene transcription by amino acid availability has been obtained in cultured cell lines. The present study aims to investigate the mechanisms involved in transcriptional activation of the TRB3 gene following amino acid limitation in mice liver. The results show that TRB3 is up-regulated in the liver of mice fed a leucine-deficient diet and that this induction is quickly reversible. Using transient transfection and chromatin immunoprecipitation approaches in hepatoma cells, we report the characterization of a functional Amino Acid Response Element (AARE) in the TRB3 promoter and the binding of ATF4, ATF2 and C/EBPβ to this AARE sequence. We also provide evidence that only the binding of ATF4 to the AARE plays a crucial role in the amino acid-regulated transcription of TRB3. In mouse liver, we demonstrate that the GCN2/eIF2α/ATF4 pathway is essential for the induction of the TRB3 gene transcription in response to a leucine-deficient diet. Therefore, this work establishes for the first time that the molecular mechanisms involved in the regulation of gene transcription by amino acid availability are functional in mouse liver
- …