69 research outputs found

    Fluvial carbon dioxide emission from the Lena River basin during the spring flood

    Get PDF
    Greenhouse gas (GHG) emission from inland waters of permafrost-affected regions is one of the key factors of circumpolar aquatic ecosystem response to climate warming and permafrost thaw. Riverine systems of central and eastern Siberia contribute a significant part of the water and carbon (C) export to the Arctic Ocean, yet their C exchange with the atmosphere remains poorly known due to lack of in situ GHG concentration and emission estimates. Here we present the results of continuous in situ pCO2 measurements over a 2600 km transect of the Lena River main stem and lower reaches of 20 major tributaries (together representing a watershed area of 1 661 000 km2, 66 % of the Lena's basin), conducted at the peak of the spring flood. The pCO2 in the Lena (range 400-1400 μatm) and tributaries (range 400-1600 μatm) remained generally stable (within ca. 20 %) over the night-day period and across the river channels. The pCO2 in tributaries increased northward with mean annual temperature decrease and permafrost increase; this change was positively correlated with C stock in soil, the proportion of deciduous needleleaf forest, and the riparian vegetation. Based on gas transfer coefficients obtained from rivers of the Siberian permafrost zone (kCombining double low line4.46 md-1), we calculated CO2 emission for the main stem and tributaries. Typical fluxes ranged from 1 to 2 gCm-2d-1 (>99 % CO2, <1 % CH4), which is comparable with CO2 emission measured in the Kolyma, Yukon, and Mackenzie rivers and permafrost-affected rivers in western Siberia. The areal C emissions from lotic waters of the Lena watershed were quantified by taking into account the total area of permanent and seasonal water of the Lena basin (28 000 km2 ). Assuming 6 months of the year to be an open water period with no emission under ice, the annual C emission from the whole Lena basin is estimated as 8.3±2.5 TgCyr-1, which is comparable to the DOC and dissolved inorganic carbon (DIC) lateral export to the Arctic Ocean

    Exploiting growing stock volume maps for large scale forest resource assessment: Cross-comparisons of ASAR- and PALSAR-based GSV estimates with forest inventory in Central Siberia

    Get PDF
    Growing stock volume is an important biophysical parameter describing the state and dynamics of the Boreal zone. Validation of growing stock volume (GSV) maps based on satellite remote sensing is challenging due to the lack of consistent ground reference data. The monitoring and assessment of the remote Russian forest resources of Siberia can only be done by integrating remote sensing techniques and interdisciplinary collaboration. In this paper, we assess the information content of GSV estimates in Central Siberian forests obtained at 25m from ALOS-PALSAR and 1km from ENVISAT-ASAR backscatter data. The estimates have been cross-compared with respect to forest inventory data showing 34% relative RMSE for the ASAR-based GSV retrievals and 39.4% for the PALSAR-based estimates of GSV. Fragmentation analyses using a MODIS-based land cover dataset revealed an increase of retrieval error with increasing fragmentation of the landscape. Cross-comparisons of multiple SAR-based GSV estimates helped to detect inconsistencies in the forest inventory data and can support an update of outdated forest inventory stands

    Ecological and conceptual consequences of Arctic pollution

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordAlthough the effect of pollution on forest health and decline received much attention in the 1980s, it has not been considered to explain the ‘Divergence Problem’ in dendroclimatology; a decoupling of tree growth from rising air temperatures since the 1970s. Here we use physical and biogeochemical measurements of hundreds of living and dead conifers to reconstruct the impact of heavy industrialisation around Norilsk in northern Siberia. Moreover, we develop a forward model with surface irradiance forcing to quantify long‐distance effects of anthropogenic emissions on the functioning and productivity of Siberia’s taiga. Downwind from the world’s most polluted Arctic region, tree mortality rates of up to 100% have destroyed 24,000 km2 boreal forest since the 1960s, coincident with dramatic increases in atmospheric sulphur, copper, and nickel concentrations. In addition to regional ecosystem devastation, we demonstrate how ‘Arctic Dimming’ can explain the circumpolar ‘Divergence Problem’, and discuss implications on the terrestrial carbon cycle.Forest ServiceMinistry of Science and Higher EducationRussian Science Foundatio

    The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations

    Get PDF
    The terrestrial forest carbon pool is poorly quantified, in particular in regions with low forest inventory capacity. By combining multiple satellite observations of synthetic aperture radar (SAR) backscatter around the year 2010, we generated a global, spatially explicit dataset of above-ground live biomass (AGB; dry mass) stored in forests with a spatial resolution of 1 ha. Using an extensive database of 110 897 AGB measurements from field inventory plots, we show that the spatial patterns and magnitude of AGB are well captured in our map with the exception of regional uncertainties in high-carbon-stock forests with AGB >250 Mg ha−1, where the retrieval was effectively based on a single radar observation. With a total global AGB of 522 Pg, our estimate of the terrestrial biomass pool in forests is lower than most estimates published in the literature (426–571 Pg). Nonetheless, our dataset increases knowledge on the spatial distribution of AGB compared to the Global Forest Resources Assessment (FRA) by the Food and Agriculture Organization (FAO) and highlights the impact of a country's national inventory capacity on the accuracy of the biomass statistics reported to the FRA. We also reassessed previous remote sensing AGB maps and identified major biases compared to inventory data, up to 120 % of the inventory value in dry tropical forests, in the subtropics and temperate zone. Because of the high level of detail and the overall reliability of the AGB spatial patterns, our global dataset of AGB is likely to have significant impacts on climate, carbon, and socio-economic modelling schemes and provides a crucial baseline in future carbon stock change estimates. The dataset is available at https://doi.org/10.1594/PANGAEA.894711 (Santoro, 2018)

    Abstracts from the 3rd Conference on Aneuploidy and Cancer: Clinical and Experimental Aspects

    Get PDF

    Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes?:Systematic review

    Get PDF
    background: It is unclear whether more timely cancer diagnosis brings favourable outcomes, with much of the previous evidence, in some cancers, being equivocal. We set out to determine whether there is an association between time to diagnosis, treatment and clinical outcomes, across all cancers for symptomatic presentations. methods: Systematic review of the literature and narrative synthesis. results: We included 177 articles reporting 209 studies. These studies varied in study design, the time intervals assessed and the outcomes reported. Study quality was variable, with a small number of higher-quality studies. Heterogeneity precluded definitive findings. The cancers with more reports of an association between shorter times to diagnosis and more favourable outcomes were breast, colorectal, head and neck, testicular and melanoma. conclusions: This is the first review encompassing many cancer types, and we have demonstrated those cancers in which more evidence of an association between shorter times to diagnosis and more favourable outcomes exists, and where it is lacking. We believe that it is reasonable to assume that efforts to expedite the diagnosis of symptomatic cancer are likely to have benefits for patients in terms of improved survival, earlier-stage diagnosis and improved quality of life, although these benefits vary between cancers

    Regional scales of fire danger rating in the forest: improved technique

    No full text
    Wildland fires distribute unevenly in time and over area under the influence of weather and other factors. It is unfeasible to air patrol the whole forest area daily during a fire season as well as to keep all fire suppression forces constantly alert. Daily work and preparedness of forest fire protection services is regulated by the level of fire danger according to weather conditions (Nesterov’s index. PV-1 index), fire hazard class (Melekhov’s scale), regional scales (earlier called local scales). Unfortunately, there is still no unified comparable technique of making regional scales. As a result, it is difficult to maneuver forest fire protection resources, since the techniques currently used are not approved and not tested for their performance. They give fire danger rating incomparable even for neighboring regions. The paper analyzes the state-of-the-art in Russia and abroad. It is stated the irony is that with factors of fire danger measured quantitatively, the fire danger itself as a function has no quantitative expression. Thus, selection of an absolute criteria is of high importance for improvement of daily fire danger rating. On the example of the Chunsky forest ranger station (Krasnoyarsk Krai), an improved technique is suggested of making comparable local scales of forest fire danger rating based on an absolute criterion of fire danger rating – a probable density of active fires per million ha. A method and an algorithm are described of automatized local scales of fire danger that should facilitate effective creation of similar scales for any forest ranger station or aviation regional office using a database on forest fires and weather conditions. The information system of distant monitoring by Federal Forestry Agency of Russia is analyzed for its application in making local scales. To supplement the existing weather station net it is suggested that automatic compact weather stations or, if the latter is not possible, simple weather observation points should be organized in forest ranger stations and aviation bases for obtaining up-to-date weather information
    corecore