772 research outputs found

    La législation et l'administration allemande en Belgique

    Get PDF
    - L'organisation de l'occupation #19- La tentative de destruction de l'esprit national belge #101- Partie documentaire #145- Table des matiĂšres #28

    Characterization of nanomedicines’ surface coverage using molecular probes and capillary electrophoresis

    Get PDF
    International audienceA faithful characterization of nanomedicine (NM) is needed for a better understanding of their in vivo outcomes. Size and surface charge are studied with well-established methods. However, other relevant parameters for the understanding of NM behavior in vivo remain largely inaccessible. For instance, the reactive surface of nanomedicines, which are often grafted with macromolecules to decrease their recognition by the immune system, is excluded from a systematic characterization. Yet, it is known that a subtle modification of NMs' surface characteristics (grafting density, molecular architecture and conformation of macromolecules) is at the root of major changes in the presence of biological components. In this work, a method that investigates the steric hindrance properties of the NMs’ surface coverage based on its capacity to exclude or allow adsorption of well-defined proteins was developed based on capillary electrophoresis. A series of proteins with different molecular weights (MW) were used as molecular probes to screen their adsorption behavior on nanoparticles bearing different molecular architectures at their surface. This novel strategy evaluating to some degree a functionality of NMs can bring additional information about their shell property and might allow for a better perception of their behavior in the presence of biological components. The developed method could discriminate nanoparticles with a high surface coverage excluding high MW proteins from nanoparticles with a low surface coverage that allowed high MW proteins to adsorb on their surface. The method has the potential for further standardization and automation for a routine use. It can be applied in quality control of NMs and to investigate interactions between proteins and NM in different situations

    Development of a novel vaccine delivery system based on Gantrez nanoparticles.

    Get PDF
    The adjuvant capacity of a novel vaccine vector “Gantrez-nanoparticles” (NP) towards coated or encapsulated ovalbumin (OVA) was investigated. OVA nanoparticles were prepared by a solvent displacement method previously described. The protein was incorporated during the manufacturing process (OVA-encapsulated nanoparticles) or after the preparation (OVA-coated nanoparticles). The mean size of the different nanoparticle formulations was lower than 300 nm, and the OVA content ranged approximately from 67 ÎŒg/mg nanoparticles (for OVA-coated nanoparticles) to 30 ÎŒg/mg nanoparticles (for OVA-encapsulated nanoparticles). All the OVA-NP formulations were capable of amplifying the antibodies titres (IgG1 and IgG2a) in mice after a single subcutaneous inoculation with respect free OVA or OVA adsorbed to Alum. Furthermore, the elicited response was, for some formulations, predominantly Th1 subtype. Thus, the formulation that contained mainly the antigen inside, and with a low concentration of cross-linking agent, displayed the best potential to induce a Th1 response after 35 days post-immunisation. These results are highly suggestive for the use of Gantrez nanoparticles as an efficient antigen delivery system, especially when a long lasting Th1 cytokine response is required

    First Experience with the LHC Cryogenic Instrumentation

    Get PDF
    The LHC under commissioning at CERN will be the world's largest superconducting accelerator and therefore makes extensive use of cryogenic instruments. These instruments are installed in the tunnel and therefore have to withstand the LHC environment that imposes radiation-tolerant design and construction. Most of the instruments require individual calibration; some of them exhibit several variants as concerns measuring span; all relevant data are therefore stored in an Oracle¼ database. Those data are used for the various quality assurance procedures defined for installation and commissioning, as well as for generating tables used by the control system to configure automatically the input/output channels. This paper describes the commissioning of the sensors and the corresponding electronics, the first measurement results during the cool-down of one machine sector; it discusses the different encountered problems and their corresponding solutions

    Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells

    Get PDF
    Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan–hsa-miRNA-145 (CS–miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS–miRNA nanocomplexes were produced with a range of (+/−) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS–miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS–miRNA complexes offer a promising non-viral platform for breast cancer gene therapy

    Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: permeability and pharmacokinetic study

    Get PDF
    The aim of this work was to study the potential of pegylated poly(anhydride) nanoparticles as carriers for the oral delivery of paclitaxel (PTX). Paclitaxel is an anticancer drug, ascribed to the class IV of the Biopharmaceutical Classification system, characterised for its low aqueous solubility and to act as a substrate of the P-glycoprotein and cytochrome P450. For the pegylation of nanoparticles, three different poly(ethylene glycol) (PEG) were used: PEG 2000 (PTX-NP2), PEG 6000 (PTX-NP6) and PEG 10,000 (PTX-NP10). The transport and permeability of paclitaxel through the jejunum mucosa of rats was determined in Ussing chambers, whereas its oral bioavailability was studied in rats. The loading of PTX in pegylated nanoparticles increased between 3 and 7 times the intestinal permeability of paclitaxel through the jejunum compared with the commercial formulation Taxol. Interestingly, the permeability of PTX was significantly higher for PTX-NP2 and PTX-NP6 than for PTX-NP10. In the in vivo studies, similar results were obtained. When PTX-NP2 and PTX-NP6 were administered to rats by the oral route, sustained and therapeutic plasma levels of paclitaxel for at least 48 h were observed. The relative oral bioavailability of paclitaxel delivered in nanoparticles was calculated to be 70% for PTX-NP2, 40% for PTX-NP6 and 16% in case of PTX-NP10. All of these observations would be related with both the bioadhesive properties of these carriers and the inhibitory effect of PEG on the activity of both P-gp and P450 cytochrome

    Water-repellent cellulose fiber networks with multifunctional properties.

    Get PDF
    We demonstrate a simple but highly efficient technique to introduce multifunctional properties to cellulose fiber networks by wetting them with ethyl-cyanoacrylate monomer solutions containing various suspended organic submicrometer particles or inorganic nanoparticles. Solutions can be applied on cellulosic surfaces by simple solution casting techniques or by dip coating, both being suitable for large area applications. Immediately after solvent evaporation, ethyl-cyanoacrylate starts cross-linking around cellulose fibers under ambient conditions because of naturally occurring surface hydroxyl groups and adsorbed moisture, encapsulating them with a hydrophobic polymer shell. Furthermore, by dispersing various functional particles in the monomer solutions, hydrophobic ethyl-cyanoacrylate nanocomposites with desired functionalities can be formed around the cellulose fibers. To exhibit the versatility of the method, cellulose sheets were functionalized with different ethyl-cyanoacrylate nanocomposite shells..

    A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles

    Get PDF
    Poly(MePEG2000cyanoacrylate-co-hexadecylcyanoacrylate) (PEG-PHDCA) nanoparticles have demonstrated their capacity to reach the rat central nervous system after intravenous injection. For insight into the transport of colloidal systems across the blood-brain barrier (BBB), we developed a relevant in vitro rat BBB model consisting of a coculture of rat brain endothelial cells (RBECs) and rat astrocytes. The RBECs used in our model displayed and retained structural characteristics of brain endothelial cells, such as expression of P-glycoprotein, occludin and ZO-1, and immunofluorescence studies showed the specific localization of occludin and ZO1. The high values of transendothelial electrical resistance and low permeability coefficients of marker molecules demonstrated the functionality of this model. The comparative passage of polyhexadecylcyanoacrylate and PEG-PHDCA nanoparticles through this model was investigated, showing a higher passage of PEGylated nanoparticles, presumably by endocytosis. This result was confirmed by confocal microscopy. Thanks to a good in vitro/in vivo correlation, this rat BBB model will help in understanding the mechanisms of nanoparticle translocation and in designing new types of colloidal carriers as brain delivery systems

    Pullulan-based nanoparticles as carriers for transmucosal protein delivery

    Get PDF
    Polymeric nanoparticles have revealed very effective in transmucosal delivery of proteins. Polysaccharides are among the most used materials for the production of these carriers, owing to their structural flexibility and propensity to evidence biocompatibility and biodegradability. In parallel, there is a preference for the use of mild methods for their production, in order to prevent protein degradation, ensure lower costs and easier procedures that enable scaling up. In this work we propose the production of pullulan-based nanoparticles by a mild method of polyelectrolyte complexation. As pullulan is a neutral polysaccharide, sulfated and aminated derivatives of the polymer were synthesized to provide pullulan with a charge. These derivatives were then complexed with chitosan and carrageenan, respectively, to produce the nanocarriers. Positively charged nanoparticles of 180-270 nm were obtained, evidencing ability to associate bovine serum albumin, which was selected as model protein. In PBS pH 7.4, pullulan-based nanoparticles were found to have a burst release of 30% of the protein, which maintained up to 24h. Nanoparticle size and zeta potential were preserved upon freeze-drying in the presence of appropriate cryoprotectants. A factorial design was approached to assess the cytotoxicity of raw materials and nanoparticles by the metabolic test MTT. Nanoparticles demonstrated to not cause overt toxicity in a respiratory cell model (Calu-3). Pullulan has, thus, demonstrated to hold potential for the production of nanoparticles with an application in protein delivery
    • 

    corecore