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Abstract 

The adjuvant capacity of a novel vaccine vector “Gantrez-nanoparticles” (NP) 

towards coated or encapsulated ovalbumin (OVA) was investigated. OVA nanoparticles 

were prepared by a solvent displacement method previously described. The protein was 

incorporated during the manufacturing process (OVA-encapsulated nanoparticles) or 

after the preparation (OVA-coated nanoparticles). The mean size of the different 

nanoparticle formulations was lower than 300 nm, and the OVA content ranged 

approximately from 67 µg/mg nanoparticles (for OVA-coated nanoparticles) to 30 

µg/mg nanoparticles (for OVA-encapsulated nanoparticles). All the OVA-NP 

formulations were capable of amplifying the antibodies titres (IgG1 and IgG2a) in mice 

after a single subcutaneous inoculation with respect free OVA or OVA adsorbed to 

Alum. Furthermore, the elicited response was, for some formulations, predominantly 

Th1 subtype. Thus, the formulation that contained mainly the antigen inside, and with a 

low concentration of cross-linking agent, displayed the best potential to induce a Th1 

response after 35 days post-immunisation. These results are highly suggestive for the 

use of Gantrez nanoparticles as an efficient antigen delivery system, especially when a 

long lasting Th1 cytokine response is required.  
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1. Introduction 

 

The optimization of the efficacy of vaccines relies on the development of 

effective adjuvants including the antigen delivery systems. Alum (aluminium 

hydroxide) and MF59 (an oil-in-water emulsion containing metabolizable oil squalene 

and the surfactants Tween 80 and sorbitan trioleate Span 85) are currently the only 

adjuvants  that have been approved in most countries for vaccine administration in 

humans 1. Unfortunately, they produce sometimes adverse reactions, they are poor 

inducers of cell mediated immunity, and multiple injections are generally necessary to 

maintain an adequate level and duration of immunity 2. The single dose administration 

is an important pilar of the “gold standard” for vaccination, and controlled release of 

encapsulated antigens from biodegradable polymeric vectors (micro or nanoparticles) or 

other types of formulations such as liposomes 3, virosomes 4-6, ISCOMs 

(immunostimulatory complexes) 7 or virus-like particles 8,9 may have here a key role. In 

this context,  formulations based on PLGA copolymers, which include poly(lactide) 

homopolymer (PLA) and poly(lactide co-glycolide) copolymer (PLGA), have been 

approved for human use 10. This kind of particulate vaccine delivery systems has a lot of 

advantages such as: i) the protection of the encapsulated active product against its 

enzymatic inactivation, ii) the increase of the stability of the material incorporated 

during the manufacturing process, transport and storage of such active product, iii) the 

improvement of the efficacy of the presentation to the antigen presenting cells (APC), 

and iv) the increase of the half life of the active product in the organism 11-13.  

One of the main criteria in the choice of a vaccine depends on the sort of the 

immune response elicited. The vaccine should be able to induce an immune response 

resulting in protection, and here, the sort of the immune response is very relevant. 
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Generally, the type (Th1 or Th2) and duration of the immune response mainly 

depends on physicochemical properties of the adjuvant vector such as size, polymeric 

nature, release profile (stability of the vectors) and antigen location on the particle 14. 

The summation of these physicochemical properties deeply affects the magnitude and 

the pathway of antigen presentations. Another important factor that can affect the 

antigen presentation is the complement activation and coating of the antigen loaded 

carriers. This property is also extremely related to the surface of the carriers 15.  

Therefore, we describe here, for the first time, the adjuvant capacity of Gantrez 

nanoparticles using OVA as antigen model. The effect of OVA location (coating the 

surface or encapsulated into the matrix) as well as the effect of cross-linkage of 

nanoparticles on the antibody immune response was also studied. Gantrez AN is a 

copolymer of methyl vinyl ether and maleic anhydride which can easily react with 

amino groups. In this context, previous studies have demonstrated its efficacy to load or 

link different types of proteins, such as bovine serum albumin (BSA)16 and flagellin17. 

 

2. Material and methods 

 

2.1. Chemicals 

  

Gantrez� AN 119 [poly(methyl vinyl ether-co-maleic anhydride); MW 200,000] 

was kindly gifted by ISP (Barcelona, Spain). Ovalbumin (OVA) (grade V), 1.3-

diaminopropane (DP), 2,2´-Azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) 

diammonium salt (ABTS), alhidrogel and the anti C3 and C3b goat antiserum, were 

purchased from Sigma-Aldrich Chemie (Germany). The MicroBCA protein assay was 

supplied by Pierce (USA). The peroxidase immunoconjugates (GAM/IgG1/PO and 
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GAM/IgG2a/PO) were obtained from Nordic Immunology (The Netherlands). All other 

chemicals used were of reagent grade and obtained from Merck (Spain). 

 

2.2. Preparation of Gantrez nanoparticles 

 

 Gantrez nanoparticles were prepared by a solvent displacement method 

previously described 16. The model protein was incorporated during the manufacture 

process (OVA-loaded nanoparticles) or after the preparation of the adjuvant vectors 

(OVA-coated nanoparticles). 

 

2.2.1. Preparation of OVA-coated Gantrez nanoparticles (NP I) 

 

 Gantrez copolymer 100 mg was dissolved in 5 mL acetone and poured into 20 

mL of an ethanol: water phase (1:1 by volume) under magnetic stirring at room 

temperature. The organic solvents were eliminated under reduced pressure (Büchi R-

144, Switzerland). The freshly prepared nanoparticles (NP) were incubated with 10 mg 

ovalbumin in 5 mL of water for 1 h at room temperature under magnetic stirring. The 

resulting carriers were purified by centrifugation at 27,000 x g for 20 min. The 

supernatants were removed and the pellets resuspended in water. The purification 

procedure was repeated twice and finally, the formulations were freeze-dried (Genesis 

12EL, Virtis, USA) using sucrose (5%) as cryoprotector. 

 

2.2.2. Preparation of OVA-encapsulated Gantrez nanoparticles (NP II, NP III and 

NP IV) 
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 Briefly, 5 mg OVA were dispersed in 1 mL acetone by ultrasonication 

(Microson�) for 1 min under cooling. The OVA dispersion was then added to 4 mL 

acetone containing 100 mg Gantrez and the mixture was stirred for 30 min at room 

temperature. Then, the polymer was desolvated by the addition of 20 mL ethanol: water 

phase (1:1 by volume). The organic solvents were eliminated under reduced pressure 

(Büchi R-144, Switzerland). Some batches were cross-linked by incubation with either 

5 µg or 10 µg 1,3-diaminopropane/mg copolymer (NP III and NP IV, respectively) for 5 

minutes under magnetic stirring at room temperature. Non cross-linked (NP II) and 

cross-linked nanoparticles (NP III and NP IV) were purified by centrifugation and 

lyophilised as described above. 

 

2.3. Characterisation of Gantrez nanoparticles 

 

 The particle size and the zeta potential of nanoparticles were determined by 

photon correlation spectroscopy (PCS) and electrophoretic laser doppler anemometry, 

respectively, using a Zetamaster analyser system (Malvern Instruments, UK). The 

samples were diluted with distilled water and measured at room temperature with a 

scattering angle of  90º. All measurements were performed in triplicate. 

 The morphological characteristics of the nanoparticles were obtained by 

scanning electron microscopy (LEO Electron Microscopy Inc, Thornwood, NY) 

operating at 3kV with a filament current of about 0.5 mA. Prior to observation, the 

nanoparticles were coated with a platinum laker of about 2 nm using a Cressington 

sputter-coated 208HR with a rotatory-planetary-tilt stage, equipped with a MTM-20 

thickness controller. 
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The yield of the nanoparticles preparation process was determined by gravimetry 

from freeze-dried samples as described previously 16. 

 The quantification of the amount of associated ovalbumin to nanoparticles was 

determined using the microbichinchoninic acid (Micro BCA) protein assay. For this 

purpose, the nanoparticulate pellet, obtained after centrifugation, was digested with 

NaOH 0.1N for 24 hours at 4ºC. Then, the resulting solutions were analysed in a 

spectrophotometer at 570 nm. Calibration curves from 1 to 100 µg/mL of OVA 

(r2>0.999) were performed using a control ovalbumin solution in NaOH 0.1N. Each 

sample was assayed in triplicate and results were expressed as the amount of ovalbumin 

(in µg) per mg nanoparticles. Similarly, the encapsulation efficiency (E.E.) was 

estimated as follows: 

 

  E.E. (%) = (Qassociated/Qinitial) x 100 [Eq. 1] 

 

where Qinitial is the initial amount of ovalbumin added per mg of polymer that form the 

NP and Qassociated is the amount of encapsulated OVA per mg of NP. 

 

2.4. In vitro release study of ovalbumin from nanoparticles 

 

OVA-loaded nanoparticles (8 mg) were dispersed in eppendorf tubes by 

vortexing in 1 mL phosphate buffer saline (PBS, pH 7.4). Release study was conducted 

at 37±1ºC under rotating agitation during 7 days. At defined times, the sample tubes 

were centrifuged at 26,500 x g for 20 min and the protein content was determined in the 

supernatants by micro-BCA assay and performed in a 96-well multiscaner autoreader 

(Labsystems iEMS Reader MF). Empty nanoparticles were used as control and 
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subjected to the same procedure. Release profiles were expressed in terms of cumulative 

release, and plotted versus time.  

  

2.5. Immunisation studies 

 

Animal protocols were performed in compliance with the regulations of the 

Ethical committee of the University of Navarra in line with the European legislation on 

animal experiments (86/609/EU). 

BALB/c mice, females of 8 weeks old (supplied by Harlan Interfauna Ibérica, 

Spain), were randomized into seven groups of 5 mice. Animals were intradermally 

immunised with 10 µg OVA incorporated in one of the following formulations: i) OVA-

coated nanoparticles (NP I); ii) OVA encapsulated in conventional nanoparticles (NP 

II); iii) OVA encapsulated in cross-linked nanoparticles with 5 µg DP/mg (NP III); iv) 

OVA encapsulated in cross-linked nanoparticles with 10 µg DP/mg (NP IV); v) OVA 

adsorbed in alhydrogel (OVA-Alum); vi) free OVA dissolved in sterile buffered saline 

solution; and, vii) empty Gantrez nanoparticles (NP).  

Blood samples from the the retroorbital plexus were collected on days 0, 7, 14, 

28 and 35 post-immunization. The samples were centrifuged (3000 x g, 10 min) and the 

resulting sera were pooled. Finally, each pool was diluted 1:10 in PBS and stored at -

80ºC until analysis.  

   

2.6. Quantification of anti-OVA antibodies in serum 

 

Specific antibodies against OVA (IgG1 and IgG2a) were determined in the pooled 

sera by indirect ELISA. Briefly, microtiter wells (cliniplatte EB, Labsystems, Finland) 
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were coated with 1 µg OVA in 100 µL sodium carbonate–bicarbonate buffer (0.05 M; 

pH 9.6) at 4°C for 15 h. The plates were washed with PBS-Tween 20 (1%) and serum 

samples were added in two-fold serial dilutions in PBS-Tween 20 (1%) starting with 

1:40, and incubated at 37 °C for 4 h. After washing again with PBS-Tween 20 (1%), the 

plates were incubated, at 37ºC for 2 h, with anti-mouse IgG1 or IgG2a peroxidase 

conjugates diluted 1:1000 in PBS-Tween 20 (1%). The plates were washed and, finally, 

incubated with the substrate chromogen solution (H2O2-ABTS). The optical density 

(OD) was determined at �max 405 nm (iEMS Reader MF de Labsystems, Finlandia). 

Measurements were performed by triplicate and data were expressed as the reciprocal of 

a serum dilution whose optical density was 0.2 above blank samples. 

 

2.7. Evaluation of complement activation by 2-D immunoelectrophoresis of C3 

 

The complement activation in the presence of different nanoparticles was 

evaluated by quantification of the conversion of C3 into C3b by 2-D 

immunoelectrophoresis using a polyclonal antibody to human C3. This technique was 

performed by a modification of a protocol previously described by Labarre et al 18. 

Briefly, human serum was obtained after calcifying plasma from healthy donors and 

stored at -80ºC until use. The electrophoresis buffer contained 63 mmol/L Tris, 27 

mmol/L tricine, 1 mmol/L calcium lactate and 3 mmol/L sodium azide (pH 8.6) as 

described before by Nanjee et al 19. Veronal buffer saline (VBS) containing 0.15 mM 

Ca2+ and 0.5 mM Mg2+ ions (VBS2+) and VBS containing 40 mM ethylenediamine 

tetra-acetic acid (VBS-EDTA) were prepared as described previously 20. For the 

experiment, 100 µL of an aqueous dispersion of nanoparticles (containing a surface area 

of nanoparticles of 10 cm2) were incubated under gentle agitation for 1h at 37ºC with 50 
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µL human serum and 50 µL VBS2+. The relative surface of nanoparticles was calculated 

from the average hydrodynamic diameters according to Vittaz et al 21. After incubation, 

it was performed the first electrophoresis (600 V, 16 mA, 90 min) on 1% agarose gel 

and the second-dimension elecrophoresis (500 V, 12 mA, 18 h) on Gelbond® films in 

agarose gel plates which contained a polyclonal antibody to human C3 (anti C3 and C3b 

goat antiserum, Sigma, France). As a negative control it was used Human serum diluted 

in VBS-EDTA (1/4 v/v) and as a positive control Dex-An nanoparticles (Dextran 

nanoparticles made by anionic polimerization) incubated in serum diluted in VBS2+. In 

order to analyze the spontaneous complement activation without any activators we used 

another control with serum diluted in VBS2+. Gels were stained with Coomassie Blue 

(Sigma, France) and peaks height recorded. The results of the complement activation 

were expressed as a percentage of C3b detected on the plate regarding the sum of the 

peaks height of C3 and C3b.   

 

2.8. Statistical analysis 

 

The physico-chemical characteristics were compared using the Student t-Test. P 

values <0.05 were considered significant. For the evaluation of the complement 

activation, statistical comparisons were performed using the one-way analysis of 

variance test (ANOVA) and Tukey HSD test. P<0.01 was considered as a statistically 

significant difference. All calculations were performed using SPSS® statistical software 

program (SPSS® 10, Microsoft, USA). 

 

 3. Results 
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3.1. Characterisation of Gantrez nanoparticles 

 

The main physico-chemical characteristics of Gantrez formulations are 

summarised in Table 1. The size of OVA-loaded nanoparticles was significantly higher 

than for empty nanoparticles (NP) (p<0.05). Thus, OVA-coated nanoparticles were 

found to be 2-times higher than empty nanoparticles. Besides, the size of OVA-

encapsulated nanoparticles slightly increased with increasing amounts of cross-linking 

agent – e.g. from 205 (NP II) to 270 nm when using 10 µg DP/mg (NP IV). Their 

morphological characterization by SEM showed homogeneous populations of spherical-

shaped particles with lower size than that obtained by photon correlation spectroscopy 

(Fig. 1). The coating of nanoparticles with OVA (NP I) or the use of the cross-linking 

agent (NP III and NP IV) significantly increased the negative charge of conventional 

nanoparticles (p<0.05). 

Concerning the OVA content, it is interesting to note that, under our 

experimental conditions, the coating of nanoparticles enabled us to load 2-times more 

protein that the encapsulation process (i.e 68 vs 36 µg/mg). Furthermore, the cross-

linkage process of nanoparticles (NP III and NP IV) also negatively affected the protein 

content and reductions of about 20% in the OVA entrapment were observed, comparing 

with NP II. Similarly, with increasing the DP concentration the nanoparticle yield 

decreased.  

Table 1 

Figure 1 

Figure 2 shows the in vitro release of OVA from nanoparticle formulations in PBS 

buffer. For OVA-coated nanoparticles, the protein release profile was characterised by a 

latency period of at least 6 hours, in which less than 5% of the loaded protein was 
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released, followed by a pulse of release of about 40% of the OVA content. On the 

contrary, OVA-encapsulated nanoparticles (NP-II, NP-III and NP-IV) displayed a 

profile characterised by a burst effect of about 10-20% of the loaded protein followed 

by a sustained period of slow release. Furthermore, cross-linkage with increasing 

amounts of DP reduce the release rate of OVA. 

Figure 2 

 

3.2. Antibody response in BALB/c mice  

 

Figure 3 shows the anti-OVA IgG1 and IgG2a titres (Th2 and Th1 markers, 

respectively) in sera after intradermal immunisation with the different formulations. 

Concerning Th2 markers, all OVA-loaded nanoparticles (NP I, NP II, NP III and 

NP IV) displayed higher IgG1 titres than the OVA-Alum group. In addition, all 

nanoparticle formulations appear to induce a similar profile of antibodies secretion, 

which was also different to that observe for the control group. This profile was 

characterised by a short lag-time, of about 1 week, followed by a rapid an intense period 

of anti-OVA IgG1 secretion and, 14 days post-immunisation, a final and longer step of 

“plateau” of the antibody levels.  At the end of the experiment (day 35), the highest 

IgG1 titres were found for NP III and NP IV. In fact, cross-linked nanoparticles induced 

the production of 2-times higher levels of antibodies than NP II or 3-times higher than 

OVA-coated nanoparticles. 

Furthermore, Gantrez nanoparticles were able to induce significative Th1 responses, 

characterized by the IgG2a isotype, however some differences were observed among 

them. Thus, for NP II and NP III, the lag-time was of at least 7 days, whereas for NP I 

and NP IV, this perod was of at least 14 days. On the other hand, 35 days post-
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immunization, NP I and NP II, appeared to reach a plateau, whereas NP III and NP IV 

were still increasing their antibody levels. On day 35, NP II displayed a IgG2a titer 

which was found to be 2-times higher than for NP II and 5-times higher than for NP I. 

Figure 3 

 

3.4. Activation of C3 in the presence of the nanoparticles 

 

Figure 4 shows the percentage of C3b (activated C3) as an indicator of the 

complement activation induced by the nanoparticles after incubation in human serum 

containing divalent ions. 

VBS-EDTA and serum incubated with divalent ions (VBS2+) were used as negative 

controls. All Gantrez nanoparticles were found to have a higher ability to activate the 

complement comparing with nanoparticles reported previously to be good activators 

(Dex-An nanoparticles, described previously as strong activators, were incubated with a 

surface of 1000 cm2 18 whereas in the present study they were incubated at 10 cm2). 

Nevertheless, under the experimental conditions described here, no significant 

differences between the different formulations tested (NP, NP I, NP II and NP IV) were 

found (p<0.001).  

Figure 4 

 

4. Discussion 

Vaccination and immunotherapy are basic priorities for human and animal 

health, and a large number of adjuvants are therefore under investigation. Basically, 

polymeric adjuvant delivery-systems are able to get a prolonged antigen exposure by 
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facilitating the antigen uptake by the immune system cells. As a consequence, the 

delivery of encapsulated antigens results in more efficient immune activation than the 

equivalent amounts of free antigens 22-24. Here, we describe the use of a novel vector-

adjuvant based on nanoparticles of the polymer Gantrez, which is biocompatible and 

has been proposed as drug carrier for pharmaceutical applications16,25. The use of this 

copolymer led us to increase dramatically the immunogenicity of a soluble protein like 

OVA used here as an antigen model. In fact, this is the first description on literature of 

the use of Gantrez polymer for adjuvant purposes. 

The choice of an adjuvant depends on the kind of immune response required to 

treat pathogenic infections and immunological disorders. On the other hand, the sort of 

the immune response generated depends on the intracellular fate of the antigen. Thus, 

exogenous antigens may lead towards a T lymphocyte-MHC II restricted antigen 

presentation; in contrast, antigens delivered intracellularly tend to elicit a MHC I 

restricted presentation. Another critical preliminar consideration concerns the main 

branches of the immune response based on the different Th subsets activation. Th1 cells 

release predominantly IL-2 and gamma interferon (IFN-�) in response to the antigenic 

stimulus, activating the named “cellular” immune response. In contrast, Th2 cells 

release predominantly IL-4 and IL-5, inducing the “humoral” immune response. In 

practical means, the generation of a predominantly Th1 response is associated with 

resistance to intracellular pathogens and allergic processes. The response after Th2 

activation is, by contrast, more appropriated for the effective control of extracellular 

pathogens and autoimmune diseases. Accordingly, in order to induce a different 

presentation to the immune system cells, and hence, to study the elicited immune 

response, formulations containing OVA protein either coating the surface or included 

into nanoparticles of Gantrez were prepared. 
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First of all, OVA loading percentage data demonstrated the efficiency of the 

method of preparation used here to get a different physical distribution of that antigen 

within the particle (OVA coating or encapsulation). All the nanoparticles displayed a 

similar and homogeneous size (See Table 1 and Figure 1), being slightly higher for NP I 

(nanoparticles with OVA coating the surface) than for OVA-encapulated formulations 

(NP II, NP III and NP IV) (See Table 1). The scanning electron microscopy of freezed-

dried formulations showed that the size of the nanoparticles was slightly lower than the 

one measured by photon correlation spectroscopy, what could be due to the swelling of 

the particles in aqueous media forming a “sponge” structure. This fact has been 

previously described for legumin nanoparticles by Mirshahi et al 26. On the other hand, 

as it was expected, the outer coating with OVA (NP I) rendered more electronegative 

particles with respect the ones that were formulated with OVA encapsulated. This fact 

demonstrated that in NP I, the OVA coated the nanoparticle surface. The zeta potential 

was also more negative as long as the amount of cross-linking agent increased. 

Although OVA loading on NP I formulation was higher than OVA 

encapsulation in the other formulations (NP II, NP III and NP IV), the encapsulation 

efficiency was almost the same for all formulations. The yield of the process was also 

similar for the different nanoparticles, being approximately 80% as described previously 

by Arbos 16.  

The in vitro release studies, demonstrated that, as expected, the OVA release 

from NP I formulation (OVA coating the surface) was faster than from NP II, NP III 

and NP IV (OVA encapsulated) 27,28. 

This fact can be easily related to the immune response. In this context, we 

observed that the elicited immune response after NP I administration was of lower 
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intensity than for the other formulations (See Figure 3). Thus, we can estimate that most 

of the elicited antibody response by NP I was due to the OVA released just after the 

inoculation. These results suggest that both physical distribution of OVA and the 

consequent controlled release of the antigen exert an effect in the immunostimulating 

capacity of the nanoparticles. 

On the other hand, cross-linkage with increasing amounts of DP slightly 

diminished the OVA in vitro release from the nanoparticles. Concerning in vivo results, 

some differences were found. For IgG1 titres, cross-linked nanoparticles slightly 

increased the antibody levels. On the contrary, IgG2a titres increased more rapidly for 

NP II (non cross-linked nanoparticles) and NP III (cross-linked with 5 µg DP/mg) than 

for NP IV (cross-linked with 10 µg DP/mg). In fact, for this last formulation, no 

presence of this antibody isotype was observed before 2 weeks post-administration. In 

addition, 5 weeks post-administration, the levels of antibodies of the animals 

immunized with NP III continued to increase whereas for NP II, the levels of antibodies 

reached a plateau. All of these results may suggest than an optimal cross-linking 

concentration is required. 

Sustained presentation of antigen by these systems could be the decisive factor 

in inducing long lasting immune responses. Maximizing a desired response by 

controlling delivery pathways is crucial in vaccine development and immunotherapy. It 

has long been suggested that the sustained release characteristics of the antigen delivery 

system, related to the “depot effect” contribute to the immunogenicity-enhancing effect 

of adjuvant by producing a prolonged immunological response 23,29. However, in this 

case, Th2 would be expected to predominate in response to a free-released OVA. On the 

contrary, our data on a selective Th1 response suggest that the associated antigen-

Gantrez-nanoparticles, particularly those cross-linked with DP, is more important than a 
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depot effect. The potent, long-lasting immune responses induced after a single injection 

of antigen-loaded NP III may be due to its efficient uptake by dendritic cells (DCs), 

efficient antigen processing and sustained presentation to T-helper cells. However, the 

use of Gantrez copolymer, diaminopropane as cross-linking agent and physical location 

of the antigen may contribute to its presentation to APCs (antigen presenting cells). 

The complement activation data demonstrated that Gantrez nanoparticles can 

strongly activate the cleavage of C3 into C3b. This fact was corroborated comparing 

Gantrez particles with Dex-An nanoparticles, used as positive control. These 

nanoparticles were described previously as strong activators when incubated with a 

surface of 1000 cm2 but their capacity to activate complement was considerably reduced 

for the such low surface area used in the present work (10 cm2)18. As well known, 

complement activation induces phagocytosis by macrophages 30, thus, this strong 

activation of Gantrez nanoparticles could enhance the particle uptake by APCs. But the 

direct or indirect roles in the activation of APCs and induction of Th1/Th2 mediated 

immunity remain to be determined.  

Finally, as a conclusion of this work, it can be remarked that Gantrez AN 

nanoparticles seemed to be a strong adjuvant. In this context, the titres elicited by 

intradermal administration of 10 µg of OVA in combination with the new nanoparticle-

adjuvant were found to exceed titers induced by immunization with the same amount of 

antigen. Furthermore, the induced titers were elicited with a relatively smaller amount 

of antigen used by other autors31-33, supporting the potential feasibility of our system. 

Further benefits of this new antigen delivery system are currently being studied in 

vaccination and immunotherapy in animal models. 
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Table 1. Physico-chemical characteristics of Gantrez nanoparticles. 

Data were represented by mean ± SD (n=10). 

 

 
Size (nm) 

Zeta 

Potential 

(mV) 

OVA 

content 

(µg/mg) 

Encapsulation 

efficiency (%) 
Yield (%) 

NP 158 ± 3 -45.1 ± 0.5 _____ _____ 85.3 ± 0.8 

NP I 300 ± 4 -61.3 ± 3.8 67.8 ± 20.2 47.5 ± 2.1 87.2 ± 0.6 

NP II 205 ± 1 -41.4 ± 2.5 36.1 ± 3.8 50.5 ± 5.3 83.9 ± 0.8 

NP III 239 ± 4 -50.8 ± 2.9 30.1 ± 4.5 42.1 ± 6.3 78.2 ± 1.1 

NP IV 270 ± 2 -57.5 ± 3.1 31.4 ± 4.2 44.1 ± 5.9 74.9 ± 0.2 

NP: empty nanoparticles; NP I: OVA-coated nanoparticles; NP II: OVA 

encapsulated in nanoparticles; NP III: OVA encapsulated in cross-linked 

nanoparticles with 5 µg DP/mg; NP IV: OVA encapsulated in cross-linked 

nanoparticles with 10 µg DP/mg. 
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Figure 1. Scanning electron microscopy photograph of NP III (OVA 

encapsulated in cross-linked nanoparticles with 5 µg DP/mg). 
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Figure 2. In vitro release of OVA from Gantrez formulations in PBS. 

NP I (�): OVA-coated nanoparticles; NP II (�): OVA encapsulated 

in nanoparticles; NP III (�): OVA encapsulated in cross-linked 

nanoparticles with 5 µg DP/mg; NP IV (�): OVA encapsulated in 

cross-linked nanoparticles with 10 µg DP/mg. Data express the 

mean of the cumulative amount of OVA released vs. time (mean ± 

SD, n=3). 
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Figure 3. Anti-OVA IgG1 and IgG2a titres in sera after intradermal 

immunisation with: ovalbumin solution (OVA) (�), ovalbumin 

adsorbed in alhydrogel (OVA-Alum) (�), blank nanoparticles (NP) 

(�), ovalbumin coated nanoparticles (NP I) (�), ovalbumin 

encapsulated nanoparticles (NP II) (�) and cross-linked ovalbumin 

encapsulated nanoparticles (NP III (�) and NP IV (�)). The antibody 

titre is defined as the reciprocal dilution giving an optical density. 

Female BALB/c mice were immunised intradermally with 10 �g 

ovalbumin as follows: i) OVA in solution; ii) OVA adsorbed in 

alhydrogel (OVA-Alum); iii) OVA coated nanoparticles (NP I); iv-vi) 
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OVA encapsulated in nanoparticles (NP II), and nanoparticles cross-

linked with DP (NP III and NP IV); and vii) empty nanoparticles (NP).  

 (OD) reading at 405nm of ≥0.2. 
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  Serum 

VBS-EDTA 

          Serum 

VBS2+ 
  Dex-An NP NP I NP II NP III 

% C3b 6.2 ± 2 12.7 ± 0.4 14.5 ± 4.7 31.1 ± 1.4 34.1 ± 1.1 32.5 ± 0.1 35.8 ± 2 

 

Figure 4. Percentage of C3 activated (% C3b) measured by 2-D 

immunoelectrophoresis after 60 min incubation of 10 cm2 of samples 

with 50 µL of human serum at 37ºC. The relative amounts of C3 and 

C3b are indicated by the first and second peak respectively. The 

samples were as the following: Serum VBS-EDTA (negative 

control), Serum VBS2+ (experimental conditions), Dex-An 

(nanoparticles previously reported as strong complement activators 

by Labarre et al 18), and Gantrez AN nanoparticles (NP, NP I, NP II 

and NP III). (mean ± SD, n=3). *** p<0.001 for Gantrez AN 

nanoparticles vs Dex-An. 


