332 research outputs found
Phase Diagrams of Bi1-xSbx Thin Films with Different Growth Orientations
A closed-form model is developed to evaluate the band-edge shift caused by
quantum confinement for a two-dimensional non-parabolic carrier-pocket. Based
on this model, the symmetries and the band-shifts of different carrier-pockets
are evaluated for BiSb thin films that are grown along different crystalline
axes. The phase diagrams for the BiSb thin film systems with different growth
orientations are calculated and analyzed
Quantum Size Effects and Transport Phenomena in PbSe Quantum Wells and PbSe/EuS Superlattices
It is established that the room-temperature dependences of transport properties on the total thickness of PbSe layers d in PbSe/EuS superlattices exhibit an oscillatory behavior. It is shown that the oscillation period Δd practically coincides with the period of the thickness oscillations observed earlier in single PbSe/EuS quantum well. The non-monotonic character of these dependences is attributed to quantum size effects. The theoretically estimated and experimentally determined Δd values are in good agreement
Dependences of thermoelectric properties on the thickness of thin films of indium doped lead telluride
Dependences of thermoelectric properties (the Seebeck coefficient S, the electric conductivity σ, the Hall coefficient RH, the carrier mobilityμ and the thermoelectric power P = S²·σ) on the thickness d (d = 10 – 255 nm) of thin films prepared by vacuum evaporation of indiumdoped PbTe crystals and subsequent condensation on (111) BaF₂ substrates were obtained. With decreasing thickness of films to d ≈ 40 nm, there is n- to p-type inversion of conduction which is related to a change in thermodynamic equilibrium conditions and partial reevaporation of lead and/or indium atoms. Extremes were found on the thickness dependences of properties at d₁ ≈ 20 nm which is indicative of hole gas quantization. In the range of thicknesses with n-type conduction there is a smooth change in thermoelectric properties with thickness which testifies to manifestation of classical size effect and is sufficiently well described in the framework of the Fuchs-Sondheimer theory
Symmetries of Electrostatic Interaction between DNA Molecules
We study a model for pair interaction of DNA molecules generated by the
discrete dipole moments of base-pairs and the charges of phosphate groups, and
find noncommutative group of eighth order of symmetries that leave
invariant. We classify the minima using group and employ
numerical methods for finding them. The minima may correspond to several
cholesteric phases, as well as phases formed by cross-like conformations of
molecules at an angle close to , "snowflake phase". The results
depend on the effective charge of the phosphate group which can be modified
by the polycations or the ions of metals. The snowflake phase could exist for
above the threshold . Below there could be several cholesteric
phases. Close to the snowflake phase could change into the cholesteric
one at constant distance between adjacent molecules.Comment: 13 pages, 4 figure
A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites
The present article considers the linear static analysis of composite shell structures with double-curvature geometry by means of a shell finite element with variable through-the-thickness kinematic. The refined models used are grouped in the Unified Formulation by Carrera (CUF) and they permit the distribution of displacements and stresses along the thickness of the multilayered shell to be accurately described. The shell element has nine nodes and the mixed interpolation of tensorial components (MITC) method is used to contrast the membrane and shear locking phenomenon. The governing equations are derived from the principle of virtual displacement (PVD) and the finite element method (FEM) is employed to solve them. Cross-ply spherical shells with simply-supported edges and subjected to bi-sinusoidal pressure are analyzed. Various laminations, thickness ratios, and curvature ratios are considered. The results, obtained with different theories contained in the CUF, are compared with both the elasticity solutions given in the literature and the analytical solutions obtained using the CUF and the Navier's method. From the analysis, one can conclude that the shell element based on the CUF is very efficient and its use is mandatory with respect to the classical models in the study of composite structures. Finally, shells with different lamination, boundary conditions, and loads are also analyzed using high-order layer-wise theories in order to provide FEM benchmark solution
Does presence of a mid-ocean ridge enhance biomass and biodiversity?
In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km 2 in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.Peer reviewe
Prediction of Anisotropic Single-Dirac-Cones in BiSb Thin Films
The electronic band structures of BiSb thin films can be
varied as a function of temperature, pressure, stoichiometry, film thickness
and growth orientation. We here show how different anisotropic
single-Dirac-cones can be constructed in a BiSb thin film for
different applications or research purposes. For predicting anisotropic
single-Dirac-cones, we have developed an iterative-two-dimensional-two-band
model to get a consistent inverse-effective-mass-tensor and band-gap, which can
be used in a general two-dimensional system that has a non-parabolic dispersion
relation as in a BiSb thin film system
Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering
A semi-inclusive measurement of charged hadron multiplicities in deep
inelastic muon scattering off an isoscalar target was performed using data
collected by the COMPASS Collaboration at CERN. The following kinematic domain
is covered by the data: photon virtuality (GeV/), invariant
mass of the hadronic system GeV/, Bjorken scaling variable in the
range , fraction of the virtual photon energy carried by the
hadron in the range , square of the hadron transverse momentum
with respect to the virtual photon direction in the range 0.02 (GeV/ (GeV/). The multiplicities are presented as a
function of in three-dimensional bins of , , and
compared to previous semi-inclusive measurements. We explore the
small- region, i.e. (GeV/), where
hadron transverse momenta are expected to arise from non-perturbative effects,
and also the domain of larger , where contributions from
higher-order perturbative QCD are expected to dominate. The multiplicities are
fitted using a single-exponential function at small to study
the dependence of the average transverse momentum on , and . The power-law behaviour of the
multiplicities at large is investigated using various
functional forms. The fits describe the data reasonably well over the full
measured range.Comment: 28 pages, 20 figure
Size effects in thin PbSe films
The objects of the study are thin PbSe films with thicknesses d in the range of d = 5.5 – 410 nm, grown by thermal evaporation in vacuum of stoichiometric p-PbSe crystals on KCl substrates and covered with a EuSe layer. The room-temperature d-dependences of the Seebeck coefficient, Hall coefficient, electrical conductivity, charge carrier mobility, thermoelectric power factor are obtained. When d increases to ~ 20 nm, an inversion of the conductivity sign from p to n is observed. In the d-dependences of the transport properties one can isolate a monotonic and oscillatory components, whose presence is attributed to the manifestation of classical and quantum size effects, respectively. The oscillation periods Δd for electronic and hole gases are determined. Theoretically calculated Δd, assuming a size quantization of the electronic and hole spectra, and our estimate of the monotonic component of the electrical conductivity, using the Fuchs-Sondheimer theory, are in good agreement with the experimental data
Fast quantum key distribution with decoy number states
We investigate the use of photon number states to identify eavesdropping
attacks on quantum key distribution (QKD) schemes. The technique is based on
the fact that different photon numbers traverse a channel with different
transmittivity. We then describe two QKD schemes that utilize this method, one
of which overcomes the upper limit on the key generation rate imposed by the
dead time of detectors when using a heralded source of photons.Comment: 15 pages, 6 figures; Accepted to J. Mod. Op
- …
