660 research outputs found

    Electroweak superpartner production at 13.6 TeV with Resummino

    Full text link
    Due to the greater experimental precision expected from the currently ongoing LHC Run 3, equally accurate theoretical predictions are essential. We update the documentation of the Resummino package, a program dedicated to precision cross section calculations for the production of a pair of sleptons, electroweakinos, and leptons in the presence of extra gauge bosons, and for the production of an associated electroweakino-squark or electroweakino-gluino pair. We detail different additions that have been released since the initial version of the program a decade ago, and then use the code to investigate the impact of threshold resummation corrections at the next-to-next-to-leading-logarithmic accuracy. As an illustration of the code we consider the production of pairs of electroweakinos and sleptons at the LHC for centre-of-mass energies ranging up to 13.6 TeV and in simplified model scenarios. We find slightly increased total cross section values, accompanied by a significant decrease of the associated theoretical uncertainties. Furthermore, we explore the dependence of the results on the squark masses.Comment: 30 pages, 5 figure

    The maximum modulus of a trigonometric trinomial

    Full text link
    Let Lambda be a set of three integers and let C_Lambda be the space of 2pi-periodic functions with spectrum in Lambda endowed with the maximum modulus norm. We isolate the maximum modulus points x of trigonometric trinomials T in C_Lambda and prove that x is unique unless |T| has an axis of symmetry. This permits to compute the exposed and the extreme points of the unit ball of C_Lambda, to describe how the maximum modulus of T varies with respect to the arguments of its Fourier coefficients and to compute the norm of unimodular relative Fourier multipliers on C_Lambda. We obtain in particular the Sidon constant of Lambda

    Multivariate Hensel Lemma for ultrametric fields

    Full text link
    The Multivariate Hensel Lemma for local rings is usually proved as a consequence of the Grothendieck version of Zariski's Main Theorem. This version deals with a more general situation that is a priori much more difficult. In this paper, we give a direct proof of the Multivariate Hensel Lemma for ultrametric fields, in the framework of constructive mathematics and without using~ZMT. In the framework of classical mathematics, our result entails the Lemma for rank-one valued fields.Comment: In this file you find the English version, 15 pages, starting on the page numbered E1. Then the French version (Lemme de Hensel multivari\'e pour les corps ultram\'etriques), 15 pages, begins on the page numbered F

    A novel SOD1 splice site mutation associated with familial ALS revealed by SOD activity analysis

    Get PDF
    More than 145 mutations have been found in the gene CuZn-Superoxide dismutase (SOD1) in patients with amyotrophic lateral sclerosis (ALS). The vast majority are easily detected nucleotide mutations in the coding region. In a patient from a Swiss ALS family with half-normal erythrocyte SOD1 activity, exon flanking sequence analysis revealed a novel thymine to guanine mutation 7 bp upstream of exon 4 (c.240-7T>G). The results of splicing algorithm analyses were ambiguous, but five out of seven analysis tools suggested a potential novel splice site that would add six new base pairs to the mRNA. If translated, this mRNA would insert Ser and Ile between Glu78 and Arg79 in the SOD1 protein. In fibroblasts from the patient, the predicted mutant transcript and the mutant protein were both highly expressed, and despite the location of the insertion into the metal ion-binding loop IV, the SOD1 activity appeared high. In erythrocytes, which lack protein synthesis and are old compared with cultured fibroblasts, both SOD1 protein and enzymic activity was 50% of controls. Thus, the usage of the novel splice site is near 100%, and the mutant SOD1 shows the reduced stability typical of ALS-associated mutant SOD1s. The findings suggests that this novel intronic mutation is causing the disease and highlights the importance of wide exon-flanking sequencing and transcript analysis combined with erythrocyte SOD1 activity analysis in comprehensive search for SOD1 mutations in ALS. We find that there are potentially more SOD1 mutations than previously reporte

    Quality Control of Motor Unit Number Index (MUNIX) Measurements in 6 Muscles in a Single-Subject “Round-Robin” Setup

    Get PDF
    Background Motor Unit Number Index (MUNIX) is a neurophysiological measure that provides an index of the number of lower motor neurons in a muscle. Its performance across centres in healthy subjects and patients with Amyotrophic Lateral Sclerosis (ALS) has been established, but inter-rater variability between multiple raters in one single subject has not been investigated. Objective To assess reliability in a set of 6 muscles in a single subject among 12 examiners (6 experienced with MUNIX, 6 less experienced) and to determine variables associated with variability of measurements. Methods Twelve raters applied MUNIX in six different muscles (abductor pollicis brevis (APB), abductor digiti minimi (ADM), biceps brachii (BB), tibialis anterior (TA), extensor dig. brevis (EDB), abductor hallucis (AH)) twice in one single volunteer on consecutive days. All raters visited at least one training course prior to measurements. Intra- and inter-rater variability as determined by the coefficient of variation (COV) between different raters and their levels of experience with MUNIX were compared. Results Mean intra-rater COV of MUNIX was 14.0% (±6.4) ranging from 5.8 (APB) to 30.3% (EDB). Mean inter-rater COV was 18.1 (±5.4) ranging from 8.0 (BB) to 31.7 (AH). No significant differences of variability between experienced and less experienced raters were detected. Conclusion We provide evidence that quality control for neurophysiological methods can be performed with similar standards as in laboratory medicine. Intra- and inter-rater variability of MUNIX is muscle-dependent and mainly below 20%. Experienced neurophysiologists can easily adopt MUNIX and adequate teaching ensures reliable utilization of this method

    Return to driving after traumatic brain injury : a British perspective

    Get PDF
    Primary Objective: to identify current legal situation, and professional practice in assisting persons with traumatic brain injury (TBI) to return to safe driving after injury. Methods and Procedures A brief review of relevant literature, a description of the current statutory and quasi-statutory authorities regulating return to driving after TBI in the UK, and a description of the nature and resolution of clinical and practical dilemmas facing professionals helping return to safe driving after TBI. Each of the 15 UK mobility centres was contacted and literature requested; in addition a representative of each centre responded to a structured telephone survey. Main Outcome and Results: The current situation in Great Britain is described, with a brief analysis of the strengths and weaknesses both of the current statutory situation, and also the practical situation (driving centres), with suggestions for improvements in practice. Conclusion Although brain injury may cause serious limitations in driving ability, previous drivers are not routinely assessed or advised regarding return to driving after TBI

    Noncommutative Figa-Talamanca-Herz algebras for Schur multipliers

    Full text link
    We introduce a noncommutative analogue of the Fig\'a-Talamanca-Herz algebra Ap(G)A_p(G) on the natural predual of the operator space Mp,cb\frak{M}_{p,cb} of completely bounded Schur multipliers on Schatten space SpS_p. We determine the isometric Schur multipliers and prove that the space Mp\frak{M}_{p} of bounded Schur multipliers on Schatten space SpS_p is the closure in the weak operator topology of the span of isometric multipliers.Comment: 24 pages; corrected typo

    Quantum key distribution with entangled photons generated on demand by a quantum dot

    Get PDF
    Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication

    College Students’ Responses to Antismoking Messages: Denial, Defiance, and Other Boomerang Effects

    Get PDF
    Despite the success of antismoking campaigns that aim to prevent young teens from smoking, this qualitative study provides strong evidence that different initiatives are needed for college students, particularly those who already smoke. When asked for responses to current antismoking messages, nonsmokers generally championed the cause; however, smokers often responded with anger, defiance, denial, and other negative responses. Consumers who respond in this manner are not well served by existing strategies, and money used for such campaigns could be better spent. New strategies are offered in hopes that antismoking campaigns can communicate more effectively with one high-risk group—college student smokers

    Assessment of intradimensional/extradimensional attentional set-shifting in rats

    Get PDF
    The initial development of the attentional set-shifting task was supported by The Wellcome Trust (Project Grant 051945/Z/97/Z) and a Biotechnology and Biological Sciences Research Council (UK) Studentship to Jennifer M. Birrell.The rat intradimensional/extradimensional (ID/ED) task, first described by Birrell and Brown 18 years ago, has become the predominant means by which attentional set-shifting is investigated in rodents: the use of rats in the task has been described in over 135 publications by researchers from nearly 90 universities and pharmaceutical companies. There is variation in the protocols used by different groups, including differences in apparatus, stimuli (both stimulus dimensions and exemplars within), and also the methodology. Nevertheless, most of these variations seem to be of little consequence: there is remarkable similarity in the profile of published data, with consistency of learning rates and in the size and reliability of the set-shifting and reversal ‘costs’. However, we suspect that there may be inconsistent data that is unpublished or perhaps ‘failed experiments’ that may have been caused by unintended deviations from effective protocols. The purpose of this review is to describe our approach and the rationale behind certain aspects of the protocol, including common pitfalls that are encountered when establishing an effective local protocol.PostprintPeer reviewe
    • 

    corecore