17 research outputs found

    Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses

    Get PDF
    This is the post-print version of the final paper published in Journal of Hazardous Materials. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U–bacterial interaction experiments were performed at low pH values (2.0–4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase

    Culture-independent molecular analysis of bacterial diversity in uranium-ore/-mine waste-contaminated and non-contaminated sites from uranium mines

    Get PDF
    Soil, water and sediment samples collected from in and around Jaduguda, Bagjata and Turamdih mines were analyzed for physicochemical parameters and cultured, and yet to be cultured microbial diversity. Culturable fraction of microbial community measured as Colony Forming Unit (CFU) on R2A medium revealed microbes between 104 and 109 CFU/g sample. Community DNA was extracted from all the samples; 16S rRNA gene amplified, cloned and subject to Amplified Ribosomal DNA Restriction Analysis. Clones representing each OTU were selected and sequenced. Sequence analyses revealed that non-contaminated samples were mostly represented by Acidobacteria, Bacteroidetes, Firmicutes and Proteobacteria (β-, γ-, and/or δ-subdivisions) along with less frequent phyla Nitrospira, Deferribacteres, Chloroflexi. In contrast, samples obtained from highly contaminated samples showed distinct abundance of β-,γ- and α-Proteobacteria along with Acidobacteria,Bacteroidetes and members of Firmicutes, Chloroflexi, Candidate division, Planctomycete, Cyanobacteria and Actinobacteria as minor groups. Our data represented the baseline information on bacterial community composition within non-contaminated samples which could potentially be useful for assessing the impact of metal and radionuclides contamination due to uranium mine activities

    Biosorption and Biomineralization of U(VI) by the Marine Bacterium Idiomarina loihiensis MAH1: Effect of Background Electrolyte and pH

    Get PDF
    The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1. This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS), Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), and High Resolution Transmission Electron Microscopy (HRTEM). We showed that the U(VI)/bacterium interaction mechanism is highly dependent upon pH but also the nature of the used background electrolyte played a role. At neutral conditions and a U concentration ranging from 5·10−4 to 10−5 M (environmentally relevant concentrations), XAS analysis revealed that uranyl phosphate mineral phases, structurally resembling meta-autunite [Ca(UO2)2(PO4)2 2–6H2O] are precipitated at the cell surfaces of the strain MAH1. The formation of this mineral phase is independent of the background solution but U(VI) luminescence lifetime analyses demonstrated that the U(VI) speciation in seawater samples is more intricate, i.e., different complexes were formed under natural conditions. At acidic conditions, pH 2, 3 and 4.3 ([U] = 5·10−4 M, background electrolyte = 0.1 M NaClO4), the removal of U from solution was due to biosorption to Extracellular Polysaccharides (EPS) and cell wall components as evident from TEM analysis. The LIII-edge XAS and TRLFS studies showed that the biosorption process observed is dependent of pH. The bacterial cell forms a complex with U through organic phosphate groups at pH 2 and via phosphate and carboxyl groups at pH 3 and 4.3, respectively. The differences in the complexes formed between uranium and bacteria on seawater compared to NaClO4 solution demonstrates that the actinide/microbe interactions are influenced by the three studied factors, i.e., the pH, the uranium concentration and the chemical composition of the solution.This work was funded by the grants CGL2009-09760 and CGL2012-36505 (Ministerio de Ciencia e Innovación), and RNM 3943 (Junta de Andalucía), Spain

    Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    Get PDF
    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil

    Targeted isolation of cloned genomic regions by recombineering for haplotype phasing and isogenic targeting.

    No full text
    Studying genetic variations in the human genome is important for understanding phenotypes and complex traits, including rare personal variations and their associations with disease. The interpretation of polymorphisms requires reliable methods to isolate natural genetic variations, including combinations of variations, in a format suitable for downstream analysis. Here, we describe a strategy for targeted isolation of large regions (∼35 kb) from human genomes that is also applicable to any genome of interest. The method relies on recombineering to fish out target fosmid clones from pools and thereby circumvents the laborious need to plate and screen thousands of individual clones. To optimize the method, a new highly recombineering-efficient bacterial host, including inducible TrfA for fosmid copy number amplification, was developed. Various regions were isolated from human embryonic stem cell lines and a personal genome, including highly repetitive and duplicated ones. The maternal and paternal alleles at the MECP2/IRAK 1 loci were distinguished based on identification of novel allele-specific single-nucleotide polymorphisms in regulatory regions. Additionally, we applied further recombineering to construct isogenic targeting vectors for patient-specific applications. These methods will facilitate work to understand the linkage between personal variations and disease propensity, as well as possibilities for personal genome surgery

    A Fosmid Pool-Based Next Generation Sequencing Approach to Haplotype-Resolve Whole Genomes

    No full text
    Haplotype resolution of human genomes is essential to describe and interpret genetic variation and its impact on biology and disease. Our approach to haplotyping relies on converting genomic DNA into a fosmid library, which represents the entire diploid genome as a collection of haploid DNA clones of ~40 kb in size. These can be partitioned into pools such that the probability that the same pool contains both parental haplotypes is reduced to ~1 %. This is the key principle of this method, allowing entire pools of fosmids to be massively parallel sequenced, yielding haploid sequence output. Here, we present a detailed protocol for fosmid pool-based next generation sequencing to haplotype-resolve whole genomes including the following steps: (1) generation of high molecular weight DNA fragments of ~40 kb in size from genomic DNA; (2) fosmid cloning and partitioning into 96-well plates; (3) barcoded sequencing library preparation from fosmid pools for next generation sequencing; and (4) computational analysis of fosmid sequences and assembly into contiguous haploid sequences.This method can be used in combination with, but also without, whole genome shotgun sequencing to extensively resolve heterozygous SNPs and structural variants within genomic regions, resulting in haploid contigs of several hundred kb up to several Mb. This method has a broad range of applications including population and ancestry genetics, the clinical interpretation of mutations in personal genomes, the analysis of cancer genomes and highly complex disease gene regions such as MHC. Moreover, haplotype-resolved genome sequencing allows description and interpretation of the diploid nature of genome biology, for example through the analysis of haploid gene forms and allele-specific phenomena. Application of this method has enabled the production of most of the molecular haplotype-resolved genomes reported to date

    In situ bacterial colonization of compacted bentonite under deep geological high-level radioactive waste repository conditions

    No full text
    Subsurface microorganisms are expected to invade, colonize, and influence the safety performance of deep geological spent nuclear fuel (SNF) repositories. An understanding of the interactions of subsurface dwelling microbial communities with the storage is thus essential. For this to be achieved, experiments must be conducted under in situ conditions. We investigated the presence of groundwater microorganisms in repository bentonite saturated with groundwater recovered from tests conducted at the Äspö underground Hard Rock Laboratory in Sweden. A 16S ribosomal RNA and dissimilatory bisulfite reductase gene distribution between the bentonite and groundwater samples suggested that the sulfate-reducing bacteria widespread in the aquifers were not common in the clay. Aerophilic bacteria could be cultured from samples run at =55°C but not at =67°C. Generally, the largely gram-negative groundwater microorganisms were poorly represented in the bentonite while the gram-positive bacteria commonly found in the clay predominated. Thus, bentonite compacted to a density of approximately 2 g cm-3 together with elevated temperatures might discourage the mass introduction of the predominantly mesophilic granitic aquifer bacteria into future SNF repositories in the long run
    corecore