163 research outputs found

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    Enhanced diffusion of Uranium and Thorium linked to crystal plasticity in zircon

    Get PDF
    The effects of crystal-plasticity on the U-Th-Pb system in zircon is studied by quantitative microstructural and microchemical analysis of a large zircon grain collected from pyroxenite of the Lewisian Complex, Scotland. Electron backscatter diffraction (EBSD) mapping reveals a c.18° variation in crystallographic orientation that comprises both a gradual change in orientation and a series of discrete low-angle (<4°) boundaries. These microstructural data are consistent with crystal-plastic deformation of zircon associated with the formation and migration of dislocations. A heterogeneous pattern of dark cathodoluminescence, with the darkest domains coinciding with low-angle boundaries, mimics the deformation microstructure identified by EBSD. Geochemical data collected using the Sensitive High Resolution Ion MicroProbe (SHRIMP) shows a positive correlation between concentrations of the elements U, Th and Pb (ranging from 20–60 ppm, 30–110 ppm, and 14–36 ppm, respectively) and Th/U ratio (1.13 – 1.8) with the deformation microstructure. The highest measured concentrations and Th/U coincide with low-angle boundaries. This enrichment is interpreted to reflect enhanced bulk diffusion of U and Th due to the formation and migration of high-diffusivity dislocations. (207)Pb/(206)Pb ages for individual analyses show no significant variation across the grain, and define a concordant, combined mean age of 2451 ± 14 Ma. This indicates that the grain was deformed shortly after initial crystallization, most probably during retrograde Inverian metamorphism at amphibolite facies conditions. The elevated Th over U and consistent (207)Pb/(206)Pb ages indicates that deformation most likely occurred in the presence of a late-stage magmatic fluid that drove an increase in the Th/U during deformation. The relative enrichment of Th over U implies that Th/U ratio may not always be a robust indicator of crystallization environment. This study provides the first evidence of deformation-related modification of the U-Th system in zircon and has fundamental implications for the application and interpretation of zircon trace element data

    The Neoarchaean Uyea Gneiss Complex, Shetland: an onshore fragment of the Rae Craton on the European Plate

    Get PDF
    A tract of amphibolite facies granitic gneisses and metagabbros in northern Shetland, U.K., is here named the Uyea Gneiss Complex. Zircon U–Pb dating indicates emplacement of the igneous protoliths of the complex c. 2746–2726 Ma, at a later time than most of the Archaean protoliths of the Lewisian Gneiss Complex of mainland Scotland. Calc-alkaline geochemistry of the Uyea Gneiss Complex indicates arc-affinity and a strong genetic kinship among the mafic and felsic components. Zircon Hf compositions suggest an enriched mantle source and limited interaction with older crust during emplacement. Ductile fabrics developed soon after emplacement, with zircon rims at c. 2710 Ma, but there was little further deformation until Caledonian reworking east of the Uyea Shear Zone. There is no evidence for the Palaeoproterozoic reworking that dominates large tracts of the Lewisian Gneiss Complex and of the Nagssugtoqidian Orogen of East Greenland. The more northerly location of the Uyea Gneiss Complex and extensive offshore basement of similar age implies that, prior to the opening of the North Atlantic Ocean, these rocks were contiguous with the Archaean Rae Craton

    A method for effective use of enterprise modelling techniques in complex dynamic decision making

    Get PDF
    Effective organisational decision-making requires information pertaining to various organisational aspects, precise analysis capabilities, and a systematic method to capture and interpret the required information. The existing Enterprise Modelling (EM) and actor technologies together seem suitable for the specification and analysis needs of decision making. However, in absence of a method to capture required information and perform analyses, the decision-making remains a complex endeavour. This paper presents a method that captures required information in the form of models and performs what-if calculations in a systematic manner

    A model based approach for complex dynamic decision-making

    Get PDF
    Current state-of-the-practice and state-of-the-art of decision-making aids are inadequate for modern organisations that deal with significant uncertainty and business dynamism. This paper highlights the limitations of prevalent decision-making aids and proposes a model-based approach that advances the modelling abstraction and analysis machinery for complex dynamic decision-making. In particular, this paper proposes a meta-model to comprehensively represent organisation, establishes the relevance of model-based simulation technique as analysis means, introduces the advancements over actor technology to address analysis needs, and proposes a method to utilise proposed modelling abstraction, analysis technique, and analysis machinery in an effective and convenient manner. The proposed approach is illustrated using a near real-life case-study from a business process outsourcing organisation

    Subduction or sagduction? Ambiguity in constraining the origin of ultramafic–mafic bodies in the Archean crust of NW Scotland

    Get PDF
    The Lewisian Complex of NW Scotland is a fragment of the North Atlantic Craton. It comprises mostly Archean tonalite–trondhjemite–granodiorite (TTG) orthogneisses that were variably metamorphosed and reworked in the late Neoarchean to Paleoproterozoic. Within the granulite facies central region of the mainland Lewisian Complex, discontinuous belts composed of ultramafic–mafic rocks and structurally overlying garnet–biotite gneiss (brown gneiss) are spatially associated with steeply-inclined amphibolite facies shear zones that have been interpreted as terrane boundaries. Interpretation of the primary chemical composition of these rocks is complicated by partial melting and melt loss during granulite facies metamorphism, and contamination with melts derived from the adjacent migmatitic TTG host rocks. Notwithstanding, the composition of the layered ultramafic–mafic rocks is suggestive of a protolith formed by differentiation of tholeiitic magma, where the ultramafic portions of these bodies represent the metamorphosed cumulates and the mafic portions the metamorphosed fractionated liquids. Although the composition of the brown gneiss does not clearly discriminate the protolith, it most likely represents a metamorphosed sedimentary or volcano-sedimentary sequence. For Archean rocks, particularly those metamorphosed to granulite facies, the geochemical characteristics typically used for discrimination of paleotectonic environments are neither strictly appropriate nor clearly diagnostic. Many of the rocks in the Lewisian Complex have ‘arc-like’ trace element signatures. These signatures are interpreted to reflect derivation from hydrated enriched mantle and, in the case of the TTG gneisses, partial melting of amphibolite source rocks containing garnet and a Ti-rich phase, probably rutile. However, it is becoming increasingly recognised that in Archean rocks such signatures may not be unique to a subduction environment but may relate to processes such as delamination and dripping. Consequently, it is unclear whether the Lewisian ultramafic–mafic rocks and brown gneisses represent products of plate margin or intraplate magmatism. Although a subduction-related origin is possible, we propose that an intraplate origin is equally plausible. If the second alternative is correct, the ultramafic–mafic rocks and brown gneisses may represent the remnants of intracratonic greenstone belts that sank into the deep crust due to their density contrast with the underlying partially molten low viscosity TTG orthogneisses

    Hints of Universality from Inflection Point Inflation

    Get PDF
    This work aims to understand how cosmic inflation embeds into larger models of particle physics and string theory. Our work operates within a weakened version of the Landscape paradigm, wherein it is assumed that the set of possible Lagrangians is vast enough to admit the notion of a generic model. By focusing on slow-roll inflation, we examine the roles of both the scalar potential and the space of couplings which determine its precise form. In particular, we focus on the structural properties of the scalar potential, and find a surprising result: inflection point inflation emerges as an important —and under certain assumptions, dominant — possibility in the context of generic scalar potentials. We begin by a systematic coarse graining over the set of possible inflection point inflation models using V.I. Arnold’s ADE classification of singularities. Similar to du Val’s pioneering work on surface singularities, these determine structural classes for inflection point inflation which depened on a distinct number of control parameters. We consider both single and multifield inflation, and show how the various structural classes embed within each other. We also show how such control parameters influence the larger physical models in to which inflation is embedded. These techniques are then applied to both MSSM inflation and KKLT-type models of string cosmology. In the former case, we find that the scale of inflation can be entirely encoded within the super- potential of supersymmetric quantum field theories. We show how this relieves the fine-tuning required in such models by upwards of twelve orders of magnitude. Moreover, unnatural tuning between SUSY breaking and SUSY preserving sectors is eliminated without the explicit need for any hidden sector dynamics. In the later case, we discuss how structural stability vastly generalizes — and addresses — the Kallosh-Linde problem. Implications for the spectrum of SUSY breaking soft terms are then discussed, with an emphasis on how they may assist in constraining the inflationary scalar potential. We then pivot to a general discussion of the FLRW-scalar phase space, and show how inflection points induce caustics — or dynamical fixed points — amongst the space of possible trajectories. These fixed points are then used to argue that for uninformative priors on the space of couplings, the likelihood of inflection point inflation scales with the inverse cube of the number of e-foldings. We point out the geometric origin for the known ambiguity in the Liouville measure, and demonstrate of inflection point inflation ameliorates this problem. Finally we investigate the effect of the fixed point structure on the spectrum of density perturbations. We show how an anomaly in the Cosmic Mircowave Background data — low power at large scales — can be explained as a by product of the fixed point dynamics

    Three-dimensional cathodoluminescence imaging and electron backscatter diffraction: tools for studying the genetic nature of diamond inclusions

    Get PDF
    As a step towards resolving the genesis of inclusions in diamonds, a new technique is presented. This technique combines cathodoluminescence (CL) and electron backscatter diffraction (EBSD) using a focused ion beam-scanning electron microscope (FIB-SEM) instrument with the aim of determining, in detail, the three-dimensional diamond zonation adjacent to a diamond inclusion. EBSD reveals that mineral inclusions in a single diamond have similar crystallographic orientations to the host, within ±0. 4°. The chromite inclusions record a systematic change in Mg# and Cr# from core to the rim of the diamond that corresponds with a ~80°C decrease of their formation temperature as established by zinc thermometry. A chromite inclusion, positioned adjacent to a boundary between two major diamond growth zones, is multi-faceted with preferred octahedral and cubic faces. The chromite is surrounded by a volume of non-luminescent diamond (CL halo) that partially obscures any diamond growth structures. The CL halo has apparent crystallographic morphology with symmetrically oriented pointed features. The CL halo is enriched in ~200 ppm Cr and ~80 ppm Fe and is interpreted to have a secondary origin as it overprints a major primary diamond growth structure. The diamond zonation adjacent to the chromite is complex and records both syngenetic and protogenetic features based on current inclusion entrapment models. In this specific case, a syngenetic origin is favoured with the complex form of the inclusion and growth layers indicating changes of growth rates at the diamond-chromite interface. Combined EBSD and 3D-CL imaging appears an extremely useful tool in resolving the ongoing discussion about the timing of inclusion growth and the significance of diamond inclusion studies. © 2010 The Author(s)
    • …
    corecore