30 research outputs found

    Exploring star formation using the filaments in the Sloan Digital Sky Survey Data Release Five (SDSS DR5)

    Full text link
    We have quantified the average filamentarity of the galaxy distribution in seven nearly two dimensional strips from the SDSS DR5 using a volume limited sample in the absolute magnitude range -21 < M_r < -20. The average filamentarity of star forming (SF) galaxies, which are predominantly blue, is found to be more than that of other galaxies which are predominantly red. This difference is possibly an outcome of the fact that blue galaxies have a more filamentary distribution. Comparing the SF galaxies with only the blue other galaxies, we find that the two show nearly equal filamentarity. Separately analyzing the galaxies with high star formation rates (SFR) and low SFR, we find that the latter has a more filamentary distribution. We interpret this in terms of two effects (1.) A correlation between the SFR and individual galaxy properties like luminosity with the high SFR galaxies being more luminous (2.) A relation between the SFR and environmental effects like the density with the high SFR galaxies preferentially occurring in high density regions. These two effects are possibly not independent and are operating simultaneously. We do not find any difference in the filamentarity of SF galaxies and AGNs.Comment: 6 pages, 3 figures, Final accepted version in MNRAS, in pres

    The Caltech Faint Galaxy Redshift Survey XII: Clustering of Galaxies

    Get PDF
    A clustering analysis is performed on two samples of ∌600\sim 600 faint galaxies each, in two widely separated regions of the sky, including the Hubble Deep Field. One of the survey regions is configured so that some galaxy pairs span angular separations of up to 1 deg. The median redshift is zmed≈0.55z_{med}\approx 0.55. Strong clustering is obvious, with every pencil-beam field containing a handful of narrow redshift-space features, corresponding to galaxy structures with sizes of 5 to 20 Mpc. The structures are not obviously organized on planes, though one prominent, colinear triplet of structures is observed, spanning ∌20\sim 20 Mpc. This may be evidence of a filament. A galaxy--galaxy correlation function calculation is performed. No significant evolution of clustering (relative to stable clustering) is found in the redshift range 0.3<z<1.0. This is not surprising, since uncertainties in the correlation amplitude estimated from surveys like these are large; field-to-field variations and covariances between data points are both shown to be significant. Consistent with other studies in this redshift range, the galaxy--galaxy correlation length is found to be somewhat smaller than that predicted from local measurements and an assumption of no evolution. Galaxies with absorption-line-dominated spectra show much stronger clustering at distances of <2 Mpc than typical field galaxies. There is some evidence for weaker clustering at intermediate redshift than at low redshift, when the results presented here are compared with surveys of the local Universe. In subsets of the data, the measured pairwise velocity dispersion of galaxies ranges from 200 to 600kms−1600 km s^{-1}, depending on the properties of the dominant redshift structures in each subset.Comment: accepted for publication in the Ap

    On the kinematics of the Local cosmic void

    Full text link
    We collected the existing data on the distances and radial velocities of galaxies around the Local Void in the Aquila/Hercules to examine the peculiar velocity field induced by its underdensity. A sample of 1056 galaxies with distances measured from the Tip of the Red Giant Branch, the Cepheid luminosity, the SNIa luminosity, the surface brightness fluctuation method, and the Tully-Fisher relation has been used for this purpose. The amplitude of outflow is found to be ~300 km/s. The galaxies located within the void produce the mean intra-void number density about 1/5 of the mean external number density of galaxies. The void's population has a lower luminosity and a later morphological type with the medians: M_B = -15.7^m and T = 8 (Sdm), respectively.Comment: Version 1. 14 pages, 8 figures, 2 tables. Accepted to Astrophysics, Volume 54, Issue

    A filament of dark matter between two clusters of galaxies

    Full text link
    It is a firm prediction of the concordance Cold Dark Matter (CDM) cosmological model that galaxy clusters live at the intersection of large-scale structure filaments. The thread-like structure of this "cosmic web" has been traced by galaxy redshift surveys for decades. More recently the Warm-Hot Intergalactic Medium (WHIM) residing in low redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying Dark Matter skeleton, which should contain more than half of all matter, remained elusive, as earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignements of dark and luminous matter. Here we report the detection of a dark matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft X-ray emission and contributes mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. Combined with X-ray observations, we place an upper limit of 0.09 on the hot gas fraction, the mass of X-ray emitting gas divided by the total mass, in the filament.Comment: Nature, in pres

    Minivoids in the Local Volume

    Get PDF
    We consider a sphere of 7.5 Mpc radius, which contains 355 galaxies with accurately measured distances, to detect the nearest empty volumes. Using a simple void detection algorithm, we found six large (mini)voids in Aquila, Eridanus, Leo, Vela, Cepheus and Octans, each of more than 30 Mpc^3. Besides them, 24 middle-size "bubbles" of more than 5 Mpc^3 volume are detected, as well as 52 small "pores". The six largest minivoids occupy 58% of the considered volume. Addition of the bubbles and pores to them increases the total empty volume up to 75% and 81%, respectively. The detected local voids look like oblong potatoes with typical axial ratios b/a = 0.75 and c/a = 0.62 (in the triaxial ellipsoide approximation). Being arranged by the size of their volume, local voids follow power law of volumes-rankes dependence. A correlation Gamma-function of the Local Volume galaxies follows a power low with a formally calculated fractal dimension D = 1.5. We found that galaxies surrounding the local minivoids do not differ significantly from other nearby galaxies on their luminosity, but have appreciably higher hydrogen mass-to-luminosity ratio and also higher star formation rate. We recognize an effect of local expansion of typical minivoid to be \Delta H/H_0~(25+-15)%.Comment: 23 pages, 18 figures. Astrophysical Journal, accepte

    The clustering of massive galaxies at z~0.5 from the first semester of BOSS data

    Get PDF
    We calculate the real- and redshift-space clustering of massive galaxies at z~0.5 using the first semester of data by the Baryon Oscillation Spectroscopic Survey (BOSS). We study the correlation functions of a sample of 44,000 massive galaxies in the redshift range 0.4<z<0.7. We present a halo-occupation distribution modeling of the clustering results and discuss the implications for the manner in which massive galaxies at z~0.5 occupy dark matter halos. The majority of our galaxies are central galaxies living in halos of mass 10^{13}Msun/h, but 10% are satellites living in halos 10 times more massive. These results are broadly in agreement with earlier investigations of massive galaxies at z~0.5. The inferred large-scale bias (b~2) and relatively high number density (nbar=3e-4 h^3 Mpc^{-3}) imply that BOSS galaxies are excellent tracers of large-scale structure, suggesting BOSS will enable a wide range of investigations on the distance scale, the growth of large-scale structure, massive galaxy evolution and other topics.Comment: 11 pages, 12 figures, matches version accepted by Ap

    The Sloan Great Wall. Morphology and galaxy content

    Full text link
    We present the results of the study of the morphology and galaxy content of the Sloan Great Wall (SGW). We use the luminosity density field to determine superclusters in the SGW, and the fourth Minkowski functional V_3 and the morphological signature (the K_1-K_2 shapefinders curve) to show the different morphologies of the SGW, from a single filament to a multibranching, clumpy planar system. The richest supercluster in the SGW, SCl~126 and especially its core resemble a very rich filament, while another rich supercluster in the SGW, SCl~111, resembles a "multispider" - an assembly of high density regions connected by chains of galaxies. Using Minkowski functionals we study the substructure of individual galaxy populations determined by their color in these superclusters. We assess the statistical significance of the results with the halo model and smoothed bootstrap. We study the galaxy content and the properties of groups of galaxies in two richest superclusters of the SGW, paying special attention to bright red galaxies (BRGs) and to the first ranked galaxies in SGW groups. About 1/3 of BRGs are spirals. The scatter of colors of elliptical BRGs is smaller than that of spiral BRGs. About half of BRGs and of first ranked galaxies in groups have large peculiar velocities. Groups with elliptical BRGs as their first ranked galaxies populate superclusters more uniformly than the groups, which have a spiral BRG as its first ranked galaxy. The galaxy and group content of the core of the supercluster SCl~126 shows several differences in comparison with the outskirts of this supercluster and with the supercluster SCl~111. Our results suggest that the formation history and evolution of individual neighbour superclusters in the SGW has been different.Comment: Comments: 26 pages, 20 figures, accepted for publication in Ap

    The Hierarchical Structure and Dynamics of Voids

    Full text link
    Contrary to the common view voids have very complex internal structure and dynamics. Here we show how the hierarchy of structures in the density field inside voids is reflected by a similar hierarchy of structures in the velocity field. Voids defined by dense filaments and clusters can de described as simple expanding domains with coherent flows everywhere except at their boundaries. At scales smaller that the void radius the velocity field breaks into expanding sub-domains corresponding to sub- voids. These sub-domains break into even smaller sub-sub domains at smaller scales resulting in a nesting hierarchy of locally expanding domains. The ratio between the magnitude of the velocity field responsible for the expansion of the void and the velocity field defining the sub voids is approximately one order of magnitude. The small-scale components of the velocity field play a minor role in the shaping of the voids but they define the local dynamics directly affecting the processes of galaxy formation and evolution. The super-Hubble expansion inside voids makes them cosmic magnifiers by stretching their internal primordial density fluctuations allowing us to probe the small scales in the primordial density field. Voids also act like time machines by "freezing" the development of the medium-scale density fluctuations responsible for the formation of the tenuous web of structures seen connecting proto galaxies in computer simulations. As a result of this freezing haloes in voids can remain "connected" to this tenuous web until the present time. This may have an important effect in the formation and evolution of galaxies in voids by providing an efficient gas accretion mechanism via coherent low-velocity streams that can keep a steady inflow of matter for extended periods of time.Comment: High-res version are related media here: http://skysrv.pha.jhu.edu/~miguel/Papers/Hierarchy_voids/index.htm

    SDSS DR7 superclusters. Morphology

    Full text link
    We study the morphology of a set of superclusters drawn from the SDSS DR7. We calculate the luminosity density field to determine superclusters from a flux- limited sample of galaxies from SDSS DR7, and select superclusters with 300 and more galaxies for our study. The morphology of superclusters is described with the fourth Minkowski functional V3, the morphological signature (the curve in the shapefinder's K1-K2 plane) and the shape parameter (the ratio of the shapefinders K1/K2). We investigate the supercluster sample using multidimensional normal mixture modelling, and use Abell clusters to identify our superclusters with known superclusters and to study the large-scale distribution of superclusters. The superclusters in our sample form three chains of superclusters; one of them is the Sloan Great Wall. Most superclusters have filament-like overall shapes. Superclusters can be divided into two sets; more elongated superclusters are more luminous, richer, have larger diameters, and a more complex fine structure than less elongated superclusters. The fine structure of superclusters can be divided into four main morphological types: spiders, multispiders, filaments, and multibranching filaments. We present the 2D and 3D distribution of galaxies and rich groups, the fourth Minkowski functional, and the morphological signature for all superclusters. Widely different morphologies of superclusters show that their evolution has been dissimilar. A study of a larger sample of superclusters from observations and simulations is needed to understand the morphological variety of superclusters and the possible connection between the morphology of superclusters and their large-scale environment.Comment: Comments: 20 pages, 18 figures, accepted for publication in Astronomy and Astrophysic

    The Beginning and Evolution of the Universe

    Full text link
    We review the current standard model for the evolution of the Universe from an early inflationary epoch to the complex hierarchy of structure seen today. We summarize and provide key references for the following topics: observations of the expanding Universe; the hot early Universe and nucleosynthesis; theory and observations of the cosmic microwave background; Big Bang cosmology; inflation; dark matter and dark energy; theory of structure formation; the cold dark matter model; galaxy formation; cosmological simulations; observations of galaxies, clusters, and quasars; statistical measures of large-scale structure; and measurement of cosmological parameters. We conclude with discussion of some open questions in cosmology. This review is designed to provide a graduate student or other new worker in the field an introduction to the cosmological literature.Comment: 69 pages. Invited review article for Publications of the Astronomical Society of the Pacific. Supplementary references, tables, and more concise PDF file at http://www.physics.drexel.edu/univers
    corecore