437 research outputs found

    Type VI secretion: a beginner's guide

    Get PDF
    Type VI secretion is a newly described mechanism for protein transport across the cell envelope of Gram-negative bacteria. Components that have been partially characterised include an IcmF homologue, the ATPase ClpV, a regulatory FHA domain protein and the secreted VgrG and Hcp proteins. Type VI secretion is clearly a key virulence factor for some important pathogenic bacteria and has been implicated in the translocation of a potential effector protein into eukaryotic cells by at least one organism (Vibrio cholerae). However, type VI secretion systems (T6SSs) are widespread in nature and not confined to known pathogens. In accordance with the general rule that the expression of protein secretion systems is tightly regulated, expression of type VI secretion is controlled at both transcriptional and post-transcriptional levels

    Stimulation of MAP kinase pathways after maternal IL-1β exposure induces fetal lung fluid absorption in guinea pigs

    Get PDF
    BACKGROUND: We tested the hypothesis that maternal interleukin-1β (IL-1β) pretreatment and induction of fetal cortisol synthesis activates MAP kinases and thereby affects lung fluid absorption in preterm guinea pigs. METHODS: IL-1β was administered subcutaneously daily to timed-pregnant guinea pigs for three days. Fetuses were obtained by abdominal hysterotomy and instilled with isosmolar 5% albumin into the lungs and lung fluid movement was measured over 1 h by mass balance. MAP kinase expression was measured by western blot. RESULTS: Lung fluid absorption was induced at 61 days (D) gestation and stimulated at 68D gestation by IL-1β. Maternal IL-1β pretreatment upregulated ERK and upstream MEK expression at both 61 and 68D gestation, albeit being much more pronounced at 61D gestation. U0126 instillation completely blocked IL-1β-induced lung fluid absorption as well as IL-1β-induced/stimulated ERK expression. Cortisol synthesis inhibition by metyrapone attenuated ERK expression and lung fluid absorption in IL-1β-pretreated fetal lungs. JNK expression after maternal IL-1β pretreatment remained unaffected at either gestation age. CONCLUSION: These data implicate the ERK MAP kinase pathway as being important for IL-1β induction/stimulation of lung fluid absorption in fetal guinea pigs

    Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung

    Get PDF
    Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation

    Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies

    Get PDF
    Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations

    The electronic structure of iridium oxide electrodes active in water splitting

    Get PDF
    Iridium oxide based electrodes are among the most promising candidates for electrocatalyzing the oxygen evolution reaction, making it imperative to understand their chemical/electronic structure. However, the complexity of iridium oxide's electronic structure makes it particularly difficult to experimentally determine the chemical state of the active surface species. To achieve an accurate understanding of the electronic structure of iridium oxide surfaces, we have combined synchrotron-based X-ray photoemission and absorption spectroscopies with ab initio calculations. Our investigation reveals a pre-edge feature in the O K-edge of highly catalytically active X-ray amorphous iridium oxides that we have identified as O 2p hole states forming in conjunction with IrIII. These electronic defects in the near-surface region of the anionic and cationic framework are likely critical for the enhanced activity of amorphous iridium oxides relative to their crystalline counterparts

    The STRANDS project: long-term autonomy in everyday environments

    Get PDF
    Thanks to the efforts of the robotics and autonomous systems community, the myriad applications and capacities of robots are ever increasing. There is increasing demand from end users for autonomous service robots that can operate in real environments for extended periods. In the Spatiotemporal Representations and Activities for Cognitive Control in Long-Term Scenarios (STRANDS) project (http://strandsproject.eu), we are tackling this demand head-on by integrating state-of-the-art artificial intelligence and robotics research into mobile service robots and deploying these systems for long-term installations in security and care environments. Our robots have been operational for a combined duration of 104 days over four deployments, autonomously performing end-user-defined tasks and traversing 116 km in the process. In this article, we describe the approach we used to enable long-term autonomous operation in everyday environments and how our robots are able to use their long run times to improve their own performance

    Elite Refereeing in Professional Soccer: A Case Study of Mental Skills Support

    Get PDF
    Refereeing a high-profile soccer game requires a unique blend of sports-specific knowledge, physical abilities, and mental skills. While mental skills instruction has been seen as an integral element of performance enhancement in elite sport, the application of sport psychology intervention for referees and match officials is far less prominent. This case study briefly describes the levels of stress associated with refereeing elite soccer matches and the impact of stress on officiating performance and subsequent self-confidence of soccer referees. The work then outlines the program of mental skills intervention that was delivered to an elite soccer referee working within the Scottish professional soccer leagues. The program of mental skills embraced five stages: (1) Education; (2) Assessment/ profiling; (3) Mental skill learning; (4) Application of mental skills in context; and (5) Evaluation, and this article centers on the way in which each of these stages was carried out. The case study describes how the mental skills instruction program was associated with improved refereeing performance, and provides some tentative advice for sport psychology practitioners who may wish to provide consultancy services within the domain of sports officiating

    Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa

    Get PDF
    BACKGROUND: The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na(+)-K(+)-ATPase. METHODS: Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na(+)-K(+)-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. RESULTS: The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α(1)Na(+)-K(+)-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. CONCLUSIONS: These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs
    corecore