88 research outputs found

    Statistical organelle dissection of Arabidopsis guard cells using image database LIPS

    Get PDF
    To comprehensively grasp cell biological events in plant stomatal movement, we have captured microscopic images of guard cells with various organelles markers. The 28,530 serial optical sections of 930 pairs of Arabidopsis guard cells have been released as a new image database, named Live Images of Plant Stomata (LIPS). We visualized the average organellar distributions in guard cells using probabilistic mapping and image clustering techniques. The results indicated that actin microfilaments and endoplasmic reticulum (ER) are mainly localized to the dorsal side and connection regions of guard cells. Subtractive images of open and closed stomata showed distribution changes in intracellular structures, including the ER, during stomatal movement. Time-lapse imaging showed that similar ER distribution changes occurred during stomatal opening induced by light irradiation or femtosecond laser shots on neighboring epidermal cells, indicating that our image analysis approach has identified a novel ER relocation in stomatal opening

    Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches

    Get PDF
    Specific guidelines that aim to facilitate the recovery of soccer players from the demands of training and a congested fixture schedule are lacking; especially in relation to evidence-based nutritional recommendations. The importance of repeated high level performance and injury avoidance while addressing the challenges of fixture scheduling, travel to away venues, and training commitments requires a strategic and practically feasible method of implementing specific nutritional strategies. Here we present evidence-based guidelines regarding nutritional recovery strategies within the context of soccer. An emphasis is placed on providing practically applicable guidelines for facilitation of recovery when multiple matches are played within a short period of time (i.e. 48 h). Following match-play, the restoration of liver and muscle glycogen stores (via consumption of ~1.2 gkg-1h-1 of carbohydrate) and augmentation of protein synthesis (via ~40 g of protein) should be prioritised in the first 20 minutes of recovery. Daily intakes of 6-10 gkg-1 body mass of carbohydrate are recommended when limited time separates repeated matches while daily protein intakes of >1.5 gkg-1 body mass should be targeted; possibly in the form of multiple smaller feedings (e.g., 6 x 20-40 g). At least 150% of the body mass lost during exercise should be consumed within 1 h and electrolytes added such that fluid losses are ameliorated. Strategic use of protein, leucine, creatine, polyphenols and omega-3 supplements could also offer practical means of enhancing post-match recovery. Keywords: soccer, nutrition, recovery, polyphenols, omega-3, creatine, fixture, congestio

    Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology

    Get PDF
    With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage

    Rab protein evolution and the history of the eukaryotic endomembrane system

    Get PDF
    Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity

    Energy expenditure of rugby players during a 14-day in-season period, measured using doubly labelled water.

    Get PDF
    Criterion data for total energy expenditure (TEE) in elite rugby are lacking, which prediction equations may not reflect accurately. This study quantified TEE of 27 elite male rugby league (RL) and rugby union (RU) players (U16, U20, U24 age groups) during a 14-day in-season period using doubly labelled water (DLW). Measured TEE was also compared to estimated, using prediction equations. Resting metabolic rate (RMR) was measured using indirect calorimetry, and physical activity level (PAL) estimated (TEE:RMR). Differences in measured TEE were unclear by code and age (RL, 4369 ± 979; RU, 4365 ± 1122; U16, 4010 ± 744; U20, 4414 ± 688; U24, 4761 ± 1523 Kcal.day-1). Differences in PAL (overall mean 2.0 ± 0.4) were unclear. Very likely differences were observed in RMR by code (RL, 2366 ± 296; RU, 2123 ± 269 Kcal.day-1). Differences in relative RMR between U20 and U24 were very likely (U16, 27 ± 4; U20, 23 ± 3; U24, 26 ± 5 Kcal.kg-1.day-1). Differences were observed between measured and estimated TEE, using Schofield, Cunningham and Harris-Benedict equations for U16 (187 ± 614, unclear; -489 ± 564, likely and -90 ± 579, unclear Kcal.day-1), U20 (-449 ± 698, likely; -785 ± 650, very likely and -452 ± 684, likely Kcal.day-1) and U24 players (-428 ± 1292; -605 ± 1493 and -461 ± 1314 Kcal.day-1, all unclear). Rugby players have high TEE, which should be acknowledged. Large inter-player variability in TEE was observed demonstrating heterogeneity within groups, thus published equations may not appropriately estimate TEE

    Prevention of Deep Vein Thrombosis in VDU Work

    No full text
    This paper introduces preventive measures against Deep Vein Thrombosis (DVT) during Visual Display Units (VDU) work. Four experiments were conducted in order to address this issue. The effectiveness of the preventative measures was evaluated by measuring foot swelling. The results indicated that the following 3 methods would be particularly effective: (a) occasionally adopting a reclining posture with a footrest, (b) 10-min walking every 50–60 min of VDU work, and (3) stretching. In addition we predicted that taking a deep breath could sometimes be effective. DVT is likely to occur in daily life and its incidence can be related to the long-term postures associated with VDU work. This paper suggests that VDU workers should be aware of the risk of DVT and take preventative measures
    corecore