512 research outputs found

    Offering fragile X syndrome carrier screening: a prospective mixed-methods observational study comparing carrier screening of pregnant and non-pregnant women in the general population

    Get PDF
    Article focus▪ This article is a protocol of a study that involves&nbsp;offering fragile X syndrome carrier screening to&nbsp;pregnant and non-pregnant women in the&nbsp;general population. We are undertaking a programme&nbsp;evaluation approach using mixed&nbsp;methods to collect data about informed decisionmaking&nbsp;and predictors of test uptake, with a&nbsp;focus on psychosocial measures. We are also&nbsp;undertaking an economic appraisal.Key messages▪ Carrier screening for fragile X syndrome is the&nbsp;subject of debate because of concerns around&nbsp;education and counselling for this complex conditionand the potential for psychosocial harms. ▪ This study will inform policy and practice in the&nbsp;area of population carrier screening by examining&nbsp;psychosocial aspects of screening, including&nbsp;informed decision-making; models of screening,&nbsp;through antenatal care or other access points&nbsp;and health economics of carrier screening for&nbsp;fragile X syndrome.Strengths and limitations of this study▪ This study seeks to recruit 1000 women in total.&nbsp;This large sample size will give us sufficient&nbsp;power to address the aims of the study.▪ Collecting quantitative and qualitative data will&nbsp;provide a more in-depth picture of screening for&nbsp;fragile X syndrome.▪ A limitation of the study is that the data on&nbsp;models of screening may not be applicable to&nbsp;other countries that have different healthcare&nbsp;systems.</div

    Pharmacological screening using an FXN-EGFP cellular genomic reporter assay for the therapy of Friedreich ataxia

    Get PDF
    Copyright @ 2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Friedreich ataxia (FRDA) is an autosomal recessive disorder characterized by neurodegeneration and cardiomyopathy. The presence of a GAA trinucleotide repeat expansion in the first intron of the FXN gene results in the inhibition of gene expression and an insufficiency of the mitochondrial protein frataxin. There is a correlation between expansion length, the amount of residual frataxin and the severity of disease. As the coding sequence is unaltered, pharmacological up-regulation of FXN expression may restore frataxin to therapeutic levels. To facilitate screening of compounds that modulate FXN expression in a physiologically relevant manner, we established a cellular genomic reporter assay consisting of a stable human cell line containing an FXN-EGFP fusion construct, in which the EGFP gene is fused in-frame with the entire normal human FXN gene present on a BAC clone. The cell line was used to establish a fluorometric cellular assay for use in high throughput screening (HTS) procedures. A small chemical library containing FDA-approved compounds and natural extracts was screened and analyzed. Compound hits identified by HTS were further evaluated by flow cytometry in the cellular genomic reporter assay. The effects on FXN mRNA and frataxin protein levels were measured in lymphoblast and fibroblast cell lines derived from individuals with FRDA and in a humanized GAA repeat expansion mouse model of FRDA. Compounds that were established to increase FXN gene expression and frataxin levels included several anti-cancer agents, the iron-chelator deferiprone and the phytoalexin resveratrol.Muscular Dystrophy Association (USA), the National Health and Medical Research Council (Australia), the Friedreich’s Ataxia Research Alliance (USA), the Brockhoff Foundation (Australia), the Friedreich Ataxia Research Association (Australasia), Seek A Miracle (USA) and the Victorian Government’s Operational Infrastructure Support Program

    Lentivirus-meditated frataxin gene delivery reverses genome instability in Friedreich ataxia patient and mouse model fibroblasts

    Get PDF
    Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by deficiency of frataxin protein, with the primary sites of pathology being the large sensory neurons of the dorsal root ganglia and the cerebellum. FRDA is also often accompanied by severe cardiomyopathy and diabetes mellitus. Frataxin is important in mitochondrial iron–sulfur cluster (ISC) biogenesis and low-frataxin expression is due to a GAA repeat expansion in intron 1 of the FXN gene. FRDA cells are genomically unstable, with increased levels of reactive oxygen species and sensitivity to oxidative stress. Here we report the identification of elevated levels of DNA double strand breaks (DSBs) in FRDA patient and YG8sR FRDA mouse model fibroblasts compared to normal fibroblasts. Using lentivirus FXN gene delivery to FRDA patient and YG8sR cells, we obtained long-term overexpression of FXN mRNA and frataxin protein levels with reduced DSB levels towards normal. Furthermore, γ-irradiation of FRDA patient and YG8sR cells revealed impaired DSB repair that was recovered on FXN gene transfer. This suggests that frataxin may be involved in DSB repair, either directly by an unknown mechanism, or indirectly via ISC biogenesis for DNA repair enzymes, which may be essential for the prevention of neurodegeneration.Ataxia UK, FARA Australasia and FARA US

    Recent advances in the detection of repeat expansions with short-read next-generation sequencing

    Get PDF
    Short tandem repeats (STRs), also known as microsatellites, are commonly defined as consisting of tandemly repeated nucleotide motifs of 2-6 base pairs in length. STRs appear throughout the human genome, and about 239,000 are documented in the Simple Repeats Track available from the UCSC (University of California, Santa Cruz) genome browser. STRs vary in size, producing highly polymorphic markers commonly used as genetic markers. A small fraction of STRs (about 30 loci) have been associated with human disease whereby one or both alleles exceed an STR-specific threshold in size, leading to disease. Detection of repeat expansions is currently performed with polymerase chain reaction-based assays or with Southern blots for large expansions. The tests are expensive and time-consuming and are not always conclusive, leading to lengthy diagnostic journeys for patients, potentially including missed diagnoses. The advent of whole exome and whole genome sequencing has identified the genetic cause of many genetic disorders; however, analysis pipelines are focused primarily on the detection of short nucleotide variations and short insertions and deletions (indels). Until recently, repeat expansions, with the exception of the smallest expansion (SCA6), were not detectable in next-generation short-read sequencing datasets and would have been ignored in most analyses. In the last two years, four analysis methods with accompanying software (ExpansionHunter, exSTRa, STRetch, and TREDPARSE) have been released. Although a comprehensive comparative analysis of the performance of these methods across all known repeat expansions is still lacking, it is clear that these methods are a valuable addition to any existing analysis pipeline. Here, we detail how to assess short-read data for evidence of expansions, reviewing all four methods and outlining their strengths and weaknesses. Implementation of these methods should lead to increased diagnostic yield of repeat expansion disorders for known STR loci and has the potential to detect novel repeat expansions

    The structure of the tetrasialoganglioside from human brain

    Get PDF
    Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle- age onset. In nine families, we identified heterozygous C- terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease activity but lose normal perinuclear localization. These data have implications for the maintenance of vascular integrity in the degenerative cerebral microangiopathies leading to stroke and dementias

    Progress in the treatment of Friedreich ataxia

    Get PDF
    Friedreich ataxia (FRDA) is a progressive neurological disorder affecting approximately 1 in 29,000 individuals of European descent. At present, there is no approved pharmacological treatment for this condition however research into treatment of FRDA has advanced considerably over the last two decades since the genetic cause was identified. Current proposed treatment strategies include decreasing oxidative stress, increasing cellular frataxin, improving mitochondrial function as well as modulating frataxin controlled metabolic pathways. Genetic and cell based therapies also hold great promise. Finally, physical therapies are being explored as a means of maximising function in those affected by FRDA

    AD51B in Familial Breast Cancer

    Get PDF
    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C&gt;T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk

    The Friedreich's ataxia mutation may originate from a premutation and shows size reduction when transmitted from parent to affected child

    Get PDF
    Most trinucleotide repeat mutations cause dominant or X linked neurological disorders and show progressive increase in size from affected parent to affected child, the basis of phenotypic anticipation. Friedreich's ataxia (FA) is a recessive disorder in which gene dysfunction is due to an expansion of a GAA trinucleotide repeat in intron one which reduces mRNA and protein levels. We confirm that the severity of the disorder in our population depends upon the repeat length of the smaller allele, to a point where those with smaller alleles may be mis-diagnosed with other conditions such as spastic paraparesis. Two brothers were found to be heterozygou1; for the expansion and a point mutation (G to T) which leads to G130V. These patients have an atypical clinical phenotype. From studying 81 transmissions.we demonstrate that the repeat number of the expansion in FA usually decreases in size from parent to affected child, and that this affect is particularly marked in the paternal allele. No expanded alleles were found in the range between 22 and 332 trinucleotides with one important exception, a carrier with an intermediate repeat size of approximately 100. When this allele was transmitted to the affected child, the repeat increased in size either probably to 538 or possible to 1036. Analysis of a sperm sample from this carrier showed a major band for the expanded allele of 320 repeats. These data suggest that there may be a premutation for Friedrelch's ataxia carriers, similar to that demonstrated for FraX-A and that expansion occurs in two stages, the first during meiosis followed by a second mitotic expansion

    Population screening for hereditary haemochromatosis in Australia: Construction and validation of a state-transition cost-effectiveness model

    Get PDF
    INTRODUCTION: HFE-associated haemochromatosis, the most common monogenic disorder amongst populations of northern European ancestry, is characterised by iron overload. Excess iron is stored in parenchymal tissues, leading to morbidity and mortality. Population screening programmes are likely to improve early diagnosis, thereby decreasing associated disease. Our aim was to develop and validate a health economics model of screening using utilities and costs from a haemochromatosis cohort. METHODS: A state-transition model was developed with Markov states based on disease severity. Australian males (aged 30 years) and females (aged 45 years) of northern European ancestry were the target populations. The screening strategy was the status quo approach in Australia; the model was run over a lifetime horizon. Costs were estimated from the government perspective and reported in 2015 Australian dollars (A);costsandqualityadjustedlifeyears(QALYs)werediscountedat5A); costs and quality-adjusted life-years (QALYs) were discounted at 5% annually. Model validity was assessed using goodness-of-fit analyses. Second-order Monte-Carlo simulation was used to account for uncertainty in multiple parameters. RESULTS: For validity, the model reproduced mortality, life expectancy (LE) and prevalence rates in line with published data. LE for C282Y homozygote males and females were 49.9 and 40.2 years, respectively, slightly lower than population rates. Mean (95% confidence interval) QALYS were 15.7 (7.7-23.7) for males and 14.4 (6.7-22.1) for females. Mean discounted lifetime costs for C282Y homozygotes were A22,737 (3670-85,793) for males and $A13,840 (1335-67,377) for females. Sensitivity analyses revealed discount rates and prevalence had the greatest impacts on outcomes. CONCLUSION: We have developed a transparent, validated health economics model of C282Y homozygote haemochromatosis. The model will be useful to decision makers to identify cost-effective screening strategies
    corecore